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Abstract: We initiate the computation of the 2-loop quantum AdS5×S5 string corrections

on the example of a certain string configuration in S5 related by an analytic continuation to

a folded rotating string in AdS5 in the “long string” limit. The 2-loop term in the energy of

the latter should represent the subleading strong-coupling correction to the cusp anomalous

dimension and thus provide a further check of recent conjectures about the exact structure

of the Bethe ansatz underlying the AdS/CFT duality. We use the conformal gauge and

several choices of the κ-symmetry gauge. We present partial results: we compute the

bosonic contribution to the effective action and also determine the transcendental form of

the fermionic contribution but do not succeed in verifying the cancellation of all logarithmic

divergences. The main obstacle appears to be an apparent non-renormalizability of the GS

superstring (when expanded near a non-trivial background) action which first manifests

itself at the 2-loop order and leads to subtleties in dealing with power divergent integrals.
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1. Introduction

To demonstrate the AdS/CFT duality one is to establish a direct equivalence between

the spectrum of the N = 4 SYM dilatation operator and the spectrum of quantum string

energies in AdS5×S5 . There are strong indications that both spectra are indeed described

by solutions of certain Bethe ansätze (for a recent review and some references see, e.g., [1]).
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While the gauge-theory side of the duality has standard definition at weak-coupling,

the presence of the RR background supporting AdS5 ×S5 requires that the formulation of

the dual string theory should be based on the manifestly-supersymmetric Green-Schwarz

approach [2, 3] which leads to a complicated-looking non-linear action [4 – 6].

The quantization of this action is straightforward at leading semiclassical (1-loop) order

by expanding near a non-trivial classical string configuration and fixing an appropriate κ-

symmetry gauge (see, e.g., [7 – 10]). This allowed one to compute 1-loop string corrections

to energies of various classical solutions in AdS5 × S5 [10 – 15], and these explicit results

played a key role in checking the AdS/CFT duality and, in particular, in recent progress in

fixing the structure of the “string” (strong-coupling) form [16] of the Bethe ansatz [17 – 20]

which led to the exact expressions in [21, 1].1

To provide further important checks of the conjectured form of the Bethe ansatz for

the gauge/string spectrum it is crucial to learn how to extend the 1-loop computations

of [10]–[15] beyond the 1-loop level. Here, however, one faces an apparent problem: the

curved-space GS action expanded near a string background that provides the fermions

with a non-trivial propagator is formally non-renormalizable beyond one loop. While the

original string action has no dimensional parameters and both the bosonic and the fermionic

fields in it are dimensionless, when expanding near a non-trivial background one effectively

changes the dimension of fermions to canonical Dirac field one (1/2) in 2 dimensions. The

effective dimensional scale is introduced by the derivative of the bosonic string background,

leading to non-renormalizable couplings (and thus to higher power divergences).2

This problem did not seem to be appreciated in early studies of quantum GS action

which were restricted to 1-loop order [24], but it was recently emphasized in [25], where it

was suggested that it may be possible to resolve it in a special “light-cone”-type gauge. On

general grounds, one should not expect any meaningful results to depend on a particular

gauge choice, but the formulation of quantum theory may look simpler in a gauge where

the action has less non-linear form (e.g. being quadratic in l.c. gauge in flat space).3

1An additional input was the assumption of crossing symmetry [22, 23].
2It is sometimes said that one cannot quantize GS action since fermions θ “do not have a propagator”.

This is somewhat a misleading statement. The quantization of the AdS5 × S5 action is formally well-

defined as soon as one chooses a non-trivial bosonic background near which one can expand the action

(and fixes a proper κ-symmetry gauge). There is an analogy with the quantization of Einstein’s theory:

unless one chooses a non-zero background metric the metric fluctuations do not have a propagator term

— the Einstein action is non-polynomial in the metric. Specifying a background metric introduces a

dimensional coupling and also spontaneously breaks the diffeomorphism invariance of the Einstein action;

it can be formally maintained using the background field method in which the background metric is also

transforming (provided one uses a background-covariant gauge). Similar approach can be followed for the

GS string. In most practical applications (see, e.g., [10, 12]) one needs to expand near a specific background

which spontaneously breaks symmetries of the original action, just as in a generic case of the semiclassical

expansion near a solitonic solution.
3A possible alternative is to use the Berkovits version of the AdS5 × S5 GS action [26] that has a non-

degenerate fermionic quadratic term from the start and formally defines a renormalizable theory. However,

the formulation of the theory (using BRST symmetry as a basic principle) is somewhat ad hoc and is not

completely free of ambiguities (in particular, in the definition of the ghost path integral measure). To see

if this formulation is of practical use for addressing the issues discussed here it would be important to first
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On general grounds, one should expect the GS action to make sense at the quantum

level only if it happens to be UV finite: this is required by its basic gauge symmetry — the

κ-symmetry. The key technical issue is how to formulate the quantum theory (i.e. make

a choice of a regularization, measure, etc.) in a way that is indeed consistent with the

preservation of the classical symmetries at the quantum level.4

Our aim here will be to begin the investigation of the quantum AdS5×S5 string theory

beyond the 1-loop order by attempting to compute a 2-loop correction to the string world-

sheet effective action in a particular string background. This background appears to be

one of the simplest possible non-trivial choices, making the 2-loop computation tractable.

It may be viewed as a particular limit of the circular string solution with two equal SO(6)

spins [11, 27] and is an example of a “homogeneous” spinning string solution for which the

only non-vanishing string coordinates are isometric angles of AdS5×S5 which are linear in

string world-sheet coordinates τ and σ. This choice is special in that, when expanded near

it, the AdS5 × S5 string Lagrangian has constant (τ, σ independent) coefficients and thus

the computation of quantum corrections simplifies considerably. An apparent problem,

however, is that the simplest spinning string solution with two equal SO(6) spins [11, 27]

is unstable, and that seems to lead to potential problems in trying to compute the 2-loop

correction to its energy.5 One may avoid this instability by a formal analytic continuation

in the winding number m, i.e. by taking it less than one or even purely imaginary.

Remarkably, there is also another important reason to study quantum corrections to

the energy of the circular 2-spin S5 solution with an imaginary winding parameter. As

was noticed recently [15] (using an earlier observation in [28]), this solution is related by a

formal analytic continuation to a “long-string” limit of the folded string rotating in AdS5

with spin S and also orbiting along big circle of S5 with spin J . The energy of the S ≫ J

string [30, 10] goes as S + a0

√
λ ln S

J in the “long-string” limit, and it played a key role in

recent discussions of the AdS/CFT correspondence in the SL(2) sector [1, 31 – 35].

Let us start with introducing the relevant string background and reviewing the form

of the 1-loop correction to its energy.

reproduce the results of the 1-loop GS computations in [10]–[15] by starting with the Berkovits action.
4By this we mean, in particular, that the κ-symmetry does not develop anomalies, i.e. anomalies cancel.

The usual quantization schemes specify a regulator that preserves as many symmetries as possible. Anoma-

lies may arise, however, if a symmetry is broken by the regulator. A formal argument for finiteness of the

AdS5 × S5 action [4] constructed by analogy with the one for the WZW theory runs as follows: (i) the

“kinetic” term in the action is protected by global symmetry (as for, e.g., SO(n) coset sigma model) and

can thus be renormalised only by an overall factor; (ii) the coefficient of the WZ term in the action of [4]

cannot be renormalised (for a symmetric supercoset the analog of the field strength of the Bmn coupling

is covariantly constant; alternatively, the WZ term has a 3d representation that is not possible for local

covariant counterterms); (iii) the κ-symmetry relates the coefficients of the WZ and the “kinetic” terms,

thus precluding any renormalization of the latter. This argument is very formal since it assumes that both

global supercoset symmetry and the κ-symmetry are actually preserved at the quantum level. The main

issue is how to formulate the quantum theory explicitly so that these conditions are indeed met.
5A similar “homogeneous” circular string solution with one spin in AdS5 and one in S5 is stable, but

the corresponding fluctuation spectrum (and thus the propagator) is much more involved [14], substantially

complicating the problem of computing the 2-loop correction.
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1.1 String background and strong-coupling expansion of minimal twist anoma-

lous dimension

According to [30, 10] the classical energy of a folded rotating string in AdS5 × S5 which

should be dual to a minimal twist operator in planar N = 4 SYM theory scales for S ≫ J

as6

E = S + f(λ) ln S + · · · . (1.1)

For small λ the function f(λ) should have the standard perturbative gauge theory expansion

f(λ) = k1λ+k2λ
2+· · · while for large λ it should have perturbative string theory expansion

f(λ) = a0

√
λ + a1 +

a2√
λ

+ · · · , a0 =
1

π
, a1 = −3 ln 2

π
. (1.2)

The leading strong-coupling coefficients a0 [30] and a1 [10] were found to be in perfect

agreement [1, 31, 32] with the prediction of the integral equation for the minimal twist

anomalous dimension as extracted from the weak-coupling Bethe ansatz suggested in [1].7

It is obviously important to compute the value of the subleading coefficient a2 directly

as the two-loop correction in the AdS5 × S5 string theory. It can then be compared with a

prediction of [32] obtained numerically from the strong-coupling expansion of the solution

of the integral equation of [1]:8

a2 ≈ −0.29154 ± 0.0013 . (1.3)

In general, computing quantum corrections to the energy of the folded string solution in

AdS [36, 30] is very complicated due to the non-trivial σ-dependent form of this config-

uration. However, as was realized in [10, 15] to extract the leading large spin S√
λ

≫ 1

behaviour of the energy it is sufficient to consider the “long string” approximation in

which the folded string solution simplifies, becoming effectively “homogeneous”. Viewed

as a string configuration in AdS3 × S1 (where S1 is from S5) with the metric

ds2 = dρ2 − cosh2 ρ dt2 + sinh2 ρ dθ2 + dφ2 (1.4)

it is then approximated (in conformal gauge) by

t = κτ, θ ≈ κτ, ρ ≈ ℓσ, φ = ντ, ℓ ≡
√

κ2 − ν2 , (1.5)

where S is related to κ and J =
√

λν. The relevant limit we are interested in is

κ ≫ 1 ,
ν

κ
= fixed ≪ 1 (1.6)

6More precisely, one is to assume that ln S
J
≫ J√

λ
; we also omit a term linear in J on the r.h.s.

7This may not be totally surprising since the 1-loop dressing phase in the strong coupling Bethe ansatz

was extracted [19] from other 1-loop string results; nevertheless, it provides a non-trivial check of the

analytic continuation prescription suggested in [1], as it implies the existence of a single function with

correct weak-coupling and strong-coupling limits.
8The strong-coupling expansion of this integrals equation appears to be subtle [34], so it is not clear to

us if the numerical result of [32]for a2 is completely without doubt; it would surely be important to obtain

the expressions for the strong-coupling coefficients a1, a2, . . . analytically. Note that the coupling g used

in [1, 32] is related to λ used here by g =
√

λ
4π

.
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which is sufficient for computing the coefficient of the leading ln S term in the energy.

The above configuration (1.5) is related [15] by a formal analytic continuation [28] to

the J1 = J2 circular string solution in Rt × S3 part of AdS5 × S5

ds2 = −dt′2 + dψ2 + cos2 ψ dφ2
2 + sin2 ψ dφ2

3 (1.7)

taken in its form given in [11] (J1 = J2 =
√

λw):

t′ = κ′τ, ψ = mσ, φ2 = φ3 = wτ, w =
√

κ′2 − m2 . (1.8)

Under the continuation t → φ2, ρ → iψ, φ → φ3, φ → t′ (one is also to change the overall

sign of the string action) and the parameters are related as follows:

κ′ = ν , m = iℓ = i
√

κ2 − ν2 , w = κ . (1.9)

The quadratic fluctuation action near the above solution will have constant coefficients

after a coordinate rotation [11, 12]. We may also start directly with the same background

(1.8) in the equivalent “rotated” form given in [27]:

ψ =
π

4
, φ2 = wτ + mσ , φ3 = wτ − mσ . (1.10)

Then all coefficients in the fluctuation Lagrangian will be manifestly constant. It is the

configuration (1.10) that will be our starting point for the quantum loop computation.

Our aim below will be to compute the 2-loop string correction to the energy of the

circular solution (1.10) assuming the analytic continuation in m (1.9) and the scaling limit

(1.6). For simplicity we shall also set ν = 0, i.e. set the S5 spin of the folded string to be

zero or κ′ = 0 for the rotating solution in (1.9):

κ′ = ν = 0 , m = −iκ, w = κ , κ ≈ 1

π
ln

S√
λ
→ ∞ . (1.11)

In this case the world sheet coordinates τ and σ in (1.10) can be rescaled by κ and since

κ → ∞ we can then replace the R × S1 string world sheet by the R × R one, i.e. i.e. the

summation over the spatial momentum modes can be replaced by an integral [10, 15]. As

a result, the dependence on κ in the effective action will factorize.9

We shall assume that the analytic continuation in the parameter m makes sense beyond

the 1-loop level. We shall not try to justify the relation between the quantum corrections

to the two backgrounds (1.5) and (1.8) or (1.10) step by step; instead, we will compute the

partition function or the 2d energy near (1.10) in the formal limit κ′ → 0 as a function of

(in general, complex) argument m and at the very end set m = −iκ where κ → ∞. We

9The argument about factorization of κ dependence is strictly true only if all divergences cancel out. If,

e.g., IR divergences survive one could get non-analytic κ2 lnκ contributions. We expect them to cancel in

the final result. In particular, the analytic continuation in the winding m eliminates the tachyonic instability

of the circular solution making the 2d momentum integrals better defined in the IR.
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shall expect that the final result gives us, as it happened at the tree and the 1-loop level,

the information about the 2-loop correction to the energy of the folded string solution.10

Another technical remark is that instead of directly computing the quantum correction

to the energy of our soliton solution using operator methods we shall compute the value of

the quantum effective 1-PI action evaluated on the classical solution.11 As a preparation

for the 2-loop computation we are interested in, let us explain how one can get the same

1-loop correction as in [11, 15] by starting with the 1-loop effective action Γ1 = − ln Z1

instead of the usual expression for 1-loop energy correction in terms of the sum over the

characteristic frequencies
∑

n ωn.12

1.2 One-loop approximation

Let us first recall the expression for the leading term in the 1-loop correction to the energy

of the folded string found in the scaling limit (1.6) with ν = 0 (κ → 1
π ln S) [11, 15]:13

E =
1

κ
E2d , E

(1)
2d = πκ2a1 , a1 =

1

π

∫ ∞

0
dp ω(p) , (1.12)

ω(p) =
√

p2 + 4 + 5
√

p2 + 2
√

p2 + 2 − 8
√

p2 + 1 . (1.13)

Here ω(p) contains the contributions of 8 bosonic and 8 fermionic fluctuation modes. The

integral over p gives14

a1 = −3 ln 2

π
. (1.14)

We get the same result if we consider instead the expression for the Euclidean partition

function and define E2d as the effective action Γ divided over the 2-d time interval, i.e. at

one loop

Γ1 = − ln Z1 = V2

∫

d2q

(2π)2
Z1(q

2) , (1.15)

Z1(q
2) =

1

2

[

ln(q2 + 4) + 5 ln q2 + 2 ln(q2 + 2) − 8 ln(q2 + 1)

]

. (1.16)

10This belief is based on the intuition that the string energy has a meaning when considered as a function

of the complex values of its parameters, i.e. that different analytic continuations in parameters give values

of the energy for different physical configurations. In short, having two classical solutions related by an

analytic continuation in coordinates and parameters we shall assume that this relation holds also at the

quantum level. We cannot of course consider the rotating solution as physical in the limit (1.11) (e.g., its

energy is not defined if κ′ = 0) but we shall assume that this limit of its energy defined for complex κ′ and

m has a meaning of the energy of the folded solution.
11Note that quantum corrections should not change the form of the classical solution due to its homo-

geneous nature. This case is similar to the case of a constant abelian gauge strength background in gauge

theory.
12The two expressions are of course related in general by integrating out over p0 component of the 2d

momentum with the iǫ prescription, but here in the absence of the UV divergences even a formal Euclidean

continuation and direct integration over p0 is enough to obtain the required result.
13Since t = κτ , the space-time energy is related [10] to the 2d energy by E = 1

κ
E2d; in the limit κ → ∞

the 2d energy E2d scales as κ2.
14For the reasons mentioned above, this integral happens to be essentially the same as in the case of the

1-loop correction to the energy of the circular J1 = J2 string solution in SU(2) sector [11, 27] considered

in [17] and in appendix C of [29].

– 6 –
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Here V2 = LT is the 2-d volume which factorises since our background is homogeneous:

the fluctuation Lagrangian has constant coefficients and is thus translationally invariant.

We assumed that the original coordinates τ and σ were rescaled by κ (this decompactifies

the spatial direction in the limit κ → ∞), so that

L = 2πκ , T = κT̄ , V2 = LT = 2πκ2T̄ , (1.17)

and thus

E
(1)
2d = T̄−1Γ1 , E1 = T−1Γ1 = 2πκ

∫

d2q

(2π)2
Z1(q

2) . (1.18)

The integral over the 2d momentum is defined using the Euclidean continuation, i.e. q2 =

q2
0 + q2

1. Introducing the polar momentum space coordinates d2q = qdqdφ and integrating

over φ we end up with

E
(1)
2d =

1

2
κ2

∫ ∞

0
dv Z1(v) , v ≡ q2 . (1.19)

This leads to the same expression for a1 in E
(1)
2d = πκ2a1 as in (1.12), (1.14).

1.3 Structure of the paper

Below we shall assume that a procedure of finding the quantum correction to the energy

similar to the one described above at the 1-loop order should apply also at the 2-loop order

and will therefore concentrate on the computation of the 2-loop correction to the 1-PI 2d

effective action in the background (1.10) in the limit (1.11).

This is a technically involved computation. One issue is the large number of fields (10

bosonic and 32 fermionic) implying a large number of 2-loop Feynman graphs with non-

diagonal propagators. Another is the presence of gauge symmetries — 2d diffeomorphisms

(which we will fix by the conformal gauge) and the fermionic κ-symmetry. The preservation

of the latter is expected to be quite subtle at higher loop orders. The complicated structure

of the GS action makes the verification of cancellation of UV divergences (power-like, ln2 Λ

and ln Λ ones) non-trivial at the 2-loop order.15

We shall start in section 2 with determining the contribution of the 2-loop graphs

containing the bosonic fluctuations. Section 2.1 will review some general facts about 2-loop

renormalization of generic bosonic 2d sigma model in dimensional regularization, pointing

out in particular that for symmetric spaces like AdS5×S5 the corresponding effective action

does not contain ln2 Λ ∼ 1
ǫ2 UV divergences. In section 2.2 we shall present the form of

the bosonic part of the AdS5 × S5 action expanded to quartic order near the background

(1.10), (1.11) and in section 2.3 will collect the expressions for the corresponding 2-loop

15A crucial issue is that of an invariant UV regularization. Since the AdS5 × S5 action contains the

WZ-type term with ǫαβ tensor there are many analogies with 2-loop computations in bosonic sigma models

with Bmn coupling (see, e.g., [37, 38, 43]). Other technical issues discussed below are cancellation of IR

divergences (which would be automatically absent in the static gauge but formally may remain in the

conformal gauge since some of the modes are massless) and the lack of manifest 2d Lorentz invariance

(“spontaneously” broken beyond quadratic order by our choice of the background).

– 7 –
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momentum integrals. The explicit results for the integrals will be presented in section 2.4.

In addition to the standard 2-loop logarithmic divergence (that should be cancelled by the

fermions) we shall find that the non-trivial finite part of the bosonic contribution to the

2-loop coefficient a2 in (1.2) is given by a linear combination of the two transcendental

constants — the Catalan’s constant K and a similar combination K̃ of particular values

of the trigamma function. The bosonic contribution (2.53) happens to be a factor of 1.42

different from the value of [32] in (1.3).

In section 3 we shall summarize the results of the computation of the 2-loop graphs

involving the fermionic variables of the AdS5 × S5 action of [4] (the action is reviewed in

appendix A). We first consider the “covariant” κ-symmetry gauge θ1 = kθ2 where k is

a real number. The relevant quartic part of the superstring action is given explicitly in

appendix B. As we explain in appendix C, using a similar k = 1 gauge in the flat-space GS

action one finds that the corresponding 2-loop graphs vanish in dimensional regularization,

i.e. the 2-loop term in the flat-space partition function vanishes, in agreement with its

triviality in the light-cone gauge.

Computing the corresponding 2-loop graphs resulting from vertices in the AdS5×S5 ac-

tion (using a Mathematica-based program to evaluate several hundred Feynman diagrams)

we found that their contribution to the effective action contains ln2 Λ UV divergences.

Since these were absent in the bosonic contribution, this contradicts the expected finite-

ness of the AdS5×S5 string. Moreover, the coefficients of both the divergent and the finite

2-loop part happen to depend on the gauge-fixing parameter k. This should not happen

in an expansion near a classical solution and suggests a potential problem in our method

of computation which we are unable to resolve at the moment.

For that reason we also redo the computation in a different κ-symmetry gauge Γ+θI = 0

which is a direct analog of the usual light-cone gauge in flat space. The AdS5×S5 action in

that gauge is presented in appendix D. There we show also that expanding the AdS5 × S5

action near a null geodesic that wraps big circle of S5 and computing the resulting 2-loop

correction using Γ+θI = 0 gauge one finds that it vanishes, in agreement with the BPS

nature of the BMN vacuum state. Expanding near our background (1.10), (1.11) using

the light-cone κ-symmetry gauge we find again that the 2-loop ln2 Λ divergences do not

cancel.16

An indication of consistency of our computation is that the non-trivial finite part of

the 2-loop effective action is found to be the same in the Γ+θI = 0 and in the θ1 = θ2

(i.e. k = 1) gauges. This finite part is proportional to the Catalan’s constant. Thus, while

we are currently unable to verify the 2-loop finiteness of the AdS5 × S5 string action, an

unambiguous conclusion of our work appears to be that the fermionic contribution to the

2-loop coefficient a2 should be proportional to the transcendental Catalan’s constant. We

comment on the specific value of a2 that follows from our light-cone gauge computation at

16It is hard to attribute this lack of cancellation to a problem with the quartic fermion terms in the classical

AdS5 × S5 action as given in appendix A. Indeed, these terms provide the four-fermion entries of the tree-

level scattering matrix which have been tested in [44, 45]. Moreover, these terms contribute nontrivially in

the near BMN expansion, leading, as discussed in appendix D.1, to the expected cancellation of the 2-loop

correction to string world-sheet partition function in the expansion near a null geodesic.

– 8 –
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the end of section 3 and present some concluding remarks in section 4.

Some details of computation of 2-loop momentum integrals are discussed in appendix E.

2. Bosonic contribution to the 2-loop effective action

The bosonic part of the AdS5 ×S5 superstring action in the conformal gauge is simply the

direct sum of the standard 2d sigma models on AdS5 and S5. The corresponding quantum

theories are decoupled before fermions are switched on. Here we shall consider the 2-loop

contributions of the bosonic fluctuations near the string background (1.10), (1.11).

2.1 General remarks on bosonic sigma model

The 2d sigma model action is (here we assume a Euclidean world-sheet signature)

I =
1

4πα′

∫

d2σ Gµν(x) ∂αxµ ∂αxν , (2.1)

where in the case of our interest Gµν is the metric of AdS5 × S5 with radius a,
√

λ = a2

α′ .

If we use an explicit UV cutoff Λ → ∞, the non-trivial power divergences in the partition

function or in the effective action (computed by expanding near a solution of the classical

equations of motion) should be cancelled by the covariant measure contribution in Z =
∫

∏

σ dx(σ)
√

G(x(σ)) e−I[x], i.e. by the contribution of the counterterm

∆I = −1

2

∫

d2σ Tr ln G(x) δ(2)(σ, σ) , δ(2)(σ, σ) =
1

4π
Λ2 (2.2)

added to the bare action.17

If we use covariance-preserving dimensional regularization all power divergences will be

absent automatically, i.e. the only potential divergences at the 2-loop level will be 1
ǫ ∼ ln Λ

and 1
ǫ2

∼ ln2 Λ ones. As at the 1-loop level (1.16), the logarithmic divergences are expected

to cancel at the end between the bosonic and fermionic contributions.

At the same time, it is easy to see that ln2 Λ divergences should cancel separately for

bosons (and thus also separately for the fermions). This follows from the basic renormal-

ization properties of the sigma model in the case of the target-space metric corresponding

to the Einstein space Rµν = kGµν . Indeed, let us recall few basic facts about 2d sigma

model renormalization in dimensional regularization (see, e.g., [47 – 49]). Using subscript

0 to denote bare quantities and µ for the renormalization scale we have for the partition

function18

Z0(G0, ǫ) = Z(G,µ) , µ
∂Z

∂µ
+ β · ∂Z

∂G
= 0 . (2.3)

17This covariant measure factor may be understood as appearing from a 1-st order “phase-space” for-

mulation upon integration over the momenta. More generally (in the bosonic sigma model context), the

quadratic divergences may be absorbed into renormalization of the dimension 0 “tachyon” coupling, so in

the bosonic string context the choice of the measure is like a choice of a bare value of the tachyon field (see,

e.g., [46]).
18Since we will be expanding near a classical solution, we will not need to worry about field renormal-

ization; the parameters of our background cannot get renormalized. As was already mentioned above, for

a homogeneous solution there is also no reason to expect any change in the form of the background due to

quantum corrections to the effective action.
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Here d = 2 − 2ǫ, 1
ǫ ∼ ln Λ → ∞ and

G0 = µ−2ǫ

[

G +
1

ǫ
T1(G) +

1

ǫ2
T2(G) + · · ·

]

, (2.4)

so that from dG0
d ln µ = 0 we get

β̂ =
dG

d ln µ
= 2ǫG + β , β = 2

(

1 − G · ∂

∂G

)

T1 , (2.5)

(

1 − G · ∂

∂G

)

T2 =

(

1 − G · ∂

∂G

)

T1 ·
∂

∂G
T1 . (2.6)

To the 2-loop order

(T1)µν =
1

2
α′Rµν +

1

8
α′2RµαβγR αβγ

ν + · · · , (2.7)

(T2)µν =
1

16
α′2(DαDαRµν − DαDνRµα − DαDµRνα + DµDνR

)

, (2.8)

βµν = α′Rµν +
1

2
α′2RµαβγR αβγ

ν + · · · . (2.9)

In the case when the metric is the direct product of the AdS5 and S5 parts the Ricci

tensor is covariantly constant so that for each factor T2 = 0, i.e. there are no 1
ǫ2

∼ ln2 Λ

divergences.19

For the SN sigma model (with radius a playing the role of the running coupling con-

stant) we have Rµαβγ = 1
a2 (GµβGαγ − GµγGαβ), Rµν = (N−1)

a2 Gµν so that

(T1)µν =
N − 1

2
√

λ

[

1 +
1

2
√

λ
+ O

(

1

(
√

λ)2

)]

Gµν ,
√

λ =
a2

α′ . (2.10)

The corresponding 2-loop beta-function is of course the same as for the O(N + 1) sigma

model [50, 51], i.e. (for α′ = 1) we get β = da2

d ln µ = (N − 1)(1 + 1
a2 ) + · · · . For AdSN one

needs to invert the sign of the first term (a2 → −a2).

The coefficients of the logarithmic divergences in the sigma model effective action

computed in a particular background should be consistent with these general results. The

divergent part of the effective action should be cancelled by the cutoff dependent terms in

the bare sigma model action. Evaluated on the background (1.10) the latter is given by

(for the S5 part of the bosonic action, N = 5)

I0 =

√
λ

4π
µ−2ǫ

(

1 +
2√
λ ǫ

+
1

(
√

λ)2ǫ
+ · · ·

)∫

dτ

∫ 2π

0
dσ (m2 − w2)

= −κ2µ−2ǫ

(√
λ +

2

ǫ
+

1√
λ ǫ

+ · · ·
)

∫

dτ , (2.11)

where we used that in the scaling limit m2 → −w2 = κ2 we get m2 − w2 → −2κ2.20

19The cancellation of ln2-divergences implies also the cancellation of ln-divergences with transcendental

coefficients like ln 2 or Euler constant γ.
20The 1-loop coefficient here agrees with the UV divergent term coming from the bosonic part of the

1-loop effective action (1.16). Note that 1
2
[ln det(−∂2 + M2)]∞ = 1

4π
V2M

2 ln Λ
µ

= 1
8πǫ

V2M
2.
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2.2 AdS5 × S5 sigma model fluctuation action

As a preparation for the 2-loop computation of the effective action let us now consider the

AdS5 ×S5 bosonic action in conformal gauge expanded near the background (1.10), (1.11)

to quartic order in fluctuation fields.

We shall adopt the following parametrization of the AdS5 and S5 parts of the metric

ds2 = (ds2)AdS5 + (ds2)S5 , (2.12)

(ds2)AdS5 = −
(

1 + 1
4z2

1 − 1
4z2

)2

dt2 +
dzkdzk

(1 − 1
4z2)2

, k = 1, 2, 3, 4 , (2.13)

(ds2)S5 =
dx2 + dy2 − (xdy − ydx)2

1 − x2 − y2
+ (1 − x2 − y2) ×

×
(

dψ2 + cos2 ψ dφ2
2 + sin2 ψ dφ3

3

)

. (2.14)

The somewhat unusual form of the S5 metric is chosen so that to have a regular expansion

near the S3 solution (1.10).21 As discussed in section 1.1 above, we will be interested in the

special case of the formal analytic continuation (1.9) of this solution with the parameters

given by (1.11), i.e.

t = 0, zk = 0, x = 0, y = 0 ,

ψ =
π

4
, φ2 = κ(τ − σ) , φ3 = κ(τ + σ) , (2.15)

Expanding the bosonic part of the string action to quartic order in fluctuations near this

background

t = t̃ , zk = z̃k , x = x̃ , y = ỹ , ψ =
π

4
+ ψ̃ ,

φ2 = κ(τ − iσ) + ϕ̃2 − ϕ̃3 , φ3 = κ(τ + iσ) + ϕ̃2 + ϕ̃3 , (2.16)

we get for the quadratic, cubic and quartic terms in the bosonic action

IB =

∫

dτ

∫ 2π

0
dσ LB = −

√
λ κ2

∫

dτ +

∫

dτ

∫ 2π

0
dσ (L2 + L3 + L4 + · · · ) , (2.17)

L2 = −
√

λ

4π

[

− (∂αt̃)2 + (∂αz̃k)
2 + (∂αx̃)2 + (∂αỹ)2 + 2κ2x̃2 + 2κ2ỹ2

+ (∂αψ̃)2 + (∂αϕ̃2)
2 + (∂αϕ̃3)

2 + 4κ ψ̃(∂τ ϕ̃3 + i ∂σϕ̃2)
]

, (2.18)

L3 = −
√

λ

4π

[

2κ (x̃2 + ỹ2) (∂τ ϕ̃2 + i∂σϕ̃3) − 4ψ̃ ∂αϕ̃2∂
αϕ̃3

]

, (2.19)

L4 =

√
λ

24π

[

3(z̃k)2
(

−2(∂α t̃)2 + (∂αz̃n)2
)

− 6
(

x̃2 + ỹ2
)

(

(∂αϕ̃2)
2 + (∂αϕ̃3)

2 + (∂αψ̃)2 + 4κ ψ̃ (∂τ ϕ̃3 + i∂σϕ̃2)
)

+ 6 (x̃∂αx̃ + ỹ∂αỹ)2 − 16κ ψ̃3(∂τ ϕ̃3 + i∂σϕ̃2)
]

. (2.20)

21The standard metric (ds2)S5
= dθ2 + cos2 θ dφ2

1 + sin2 θ (dψ2 + cos2 ψ dφ2
2 + sin2 ψ dφ3

3) is related to

the above one by the following coordinate transformation: x = cos θ cos φ1, x = cos θ sin φ1.
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Let us now make a few remarks.

Since the background values in (2.15), (2.16) depend on κ only in combination with

world-sheet coordinates, we can factorize the κ-dependence in the Lagrangian (L → κ2L)

by making the rescaling

κτ → τ, κσ → σ .

This rescaling gives an equivalent theory assuming that scale invariance survives at the

quantum level; this is not the case in the pure bosonic theory but should be so once

fermions are added.

After the rescaling by κ (and assuming the cutoff dependence cancels out at the end)

the string action on Rτ × (S1)σ will depend on κ through the upper limit of integration

2πκ over rescaled σ. In the limit κ → ∞ we are interested in we can then decompactify

the spatial world-sheet dimension and thus use momentum representation with continuous

spatial components.

The 1-loop correction to the effective action that follows from (2.18) can be easily

seen to be in agreement with the bosonic part of (1.15), (1.16). The quadratic part of the

fluctuation action (2.18) can be diagonalized by a (non-local) “rotation” of the three S3

fields (see [27]). This will bring in one massive and two massless modes in the (ψ̃, ϕ̃2, ϕ̃3)

sector. The resulting quadratic fluctuation part of the superstring action will have the form

of 2d Lorentz invariant collection of massive bosonic and fermionic fields, but higher-order

terms in fluctuations will no longer have 2d Lorentz invariance (which is “spontaneously

broken” by our choice of the background). Expressed in terms of the “rotated” fields the

interaction terms will have non-local form. For that reason here we choose not to perform

this diagonalization explicitly and use non-diagonal propagator instead.

As was already mentioned, in conformal gauge the bosonic contributions of AdS5 and

S5 parts factorize. If we formally set κ = 0 in (2.18), (2.19), (2.20), i.e. consider the case

of trivial background in all directions, then the AdS5 and S5 contributions to the partition

function will become similar.22

In the action (2.17) we assumed the Minkowski world-sheet signature (−,+); the action

is not real because of our choice of the imaginary value of the winding parameter m. The

Euclidean action obtained by continuing τ → iτ is also not real but the imaginary parts

are linear in κ and derivatives, so the partition function and the effective action will be

real. We shall continue to Euclidean signature at the level of momentum-space integrals.

2.3 Structure of 2-loop quantum corrections

The 2-loop contributions to the effective action in a theory like (2.17) with three-point

and four-point vertices is given by the Feynman diagrams of the two topologies shown in

figure 1. In general, the lines in these diagrams may be either bosons or fermions. The

2-loop 1-PI effective action is then given by

Γ = V2Γ̄ , Γ̄ = Γ̄1 + Γ̄2 + · · · , Γ̄2 = Γ̄cubic + Γ̄quartic + δΓ̄measure . (2.21)

22The fact that in the AdS5 part we have only quartic interaction while in the S5 part we also have a

cubic one is an artifact of a particular parametrization and the choice of the expansion point used.
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q i

q j

qk

q i q j

(a) (b)

Figure 1: Two-loop contributions (momentum conservation qi + qj + qk = 0 is assumed).

Here V2 is the volume factor as in (1.15) (our background is homogeneous), i.e. Γ̄ stands

for the effective Lagrangian. δΓ̄measure is the contribution coming from the measure coun-

terterm (2.2) expanded to quadratic order in fluctuations, i.e. (after Wick rotation)

δL = −1

2

[

3z̃2 − 2x̃2 − 2ỹ2 − 4ψ̃2 + O(φ̃3)
]

∫

ddqj

(2π)dµd−2
, (2.22)

where
∫ ddqj

(2π)dµd−2 is the (correctly normalized) integral representation of δ(2)(0). The in-

sertion of this counterterm into a 1-loop diagram will cancel all quadratic divergences in

the 2-loop effective action. We will be using the dimensional regularization with µ as a

renormalization scale and d = 2−2ǫ since this is an invariant regularization preserving the

symmetries of the sigma model. Power divergences can be ignored in dimensional regular-

ization but it is sometimes useful to track their cancellation against the measure as a check

of combinatorial factors.

To compute the 2-loop diagrams we need to work out the propagator. The quadratic

terms in (2.18) contain off-diagonal mixings which can be readily diagonalized as in [27].

However, we found it more convenient to keep the propagator off-diagonal. Ordering the

fluctuation fields as follows

Φi = {t̃; (z̃1, z̃2, z̃3, z̃4); (x̃, ỹ); (ψ̃, ϕ̃2, ϕ̃3)} (2.23)

one finds from (2.18)

∆−1(q) =
2π√

λ























− 1
q2 0 0 0 0 0

0 1
q2 1l4 0 0 0 0

0 0 1
q2+2

1l2 0 0 0

0 0 0 1
q2+4

2q1

q2(q2+4)
−2i q0

q2(q2+4)

0 0 0 − 2q1

q2(q2+4)
(q2)2−4q2

0
(q2)2(q2+4)

2i q0q1

(q2)2(q2+4)

0 0 0 2i q0

q2(q2+4)
2i q0q1

(q2)2(q2+4)
(q2)2+4q2

1
(q2)2(k2+4)























(2.24)

Here qα = (q0, q1) is 2-momentum. We have rescaled the coordinates by κ (with κ → ∞)

and will assume that momenta take continuous values. Continuation to Euclidean signature

is done by q0 → −iq0. This eliminates i-factors from the propagator. The 1-loop effective

action is then Γ1 = 1
2Tr ln ∆ and agrees with (1.15), (1.16).23

23We may formally ignore the “ghost” nature of the t̃ fluctuation and then the 1-loop contribution of
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Defining the cubic vertex as Vijk(qi, qj , qk) = ∂3L
∂Φi∂Φj∂Φk

∣

∣

Φ=0
, i.e. writing the (Eu-

clidean) fluctuation Lagrangian corresponding to (2.17) as

L =
1

2
Φi∆ijΦj +

1

3!
VijkΦiΦjΦk +

1

4!
VijklΦiΦjΦkΦl + · · · , (2.25)

we can compute the contribution of the graphs with topology (a) in figure 1 as

Γ̄cubic = c3

∫

ddqid
dqj

(2π)2dµ2d−4
VijkVi′j′k′∆−1

ii′ ∆−1
jj′∆kk′

= c3
4π√

λ

∫

ddqid
dqj

(2π)2dµ2d−4
(I1 + I2 + I3 + IN) (2.26)

where24

c3 = − 1

12

is the combinatorial factor of the diagram and we have solved the vertex momentum conser-

vation constraint by setting qk = −(qi + qj). We assume that continuation to d dimensions

is done at the level of the momentum integrals, and µ-factors are introduced to balance

the dimensions. The overall factor of κ2 is included in the volume V2 in (2.21) as in

(1.15), (1.17).

There are many equivalent expressions for the integrands I1, I2, I3 and IN ; the one

which exposes both the UV and IR convergence properties of the loop integrals is:25

I1 = 3
4

q2
i + 4

, (2.27)

I2 = 3

[

− 2

q2
i q

2
j

+
4

q2
i (q

2
j + 4)

− 4

(q2
i + 2)(q2

j + 2)
− 14 + 8

d

(q2
i + 4)(q2

j + 4)

]

, (2.28)

I3 = 3

[

8

q2
i q

2
j

+
16

(q2
i + 2)(q2

j + 2)
− 8

(q2
i + 4)(q2

j + 4)

]

1

q2
k + 4

, (2.29)

IN = 3

[

(qi1qj0 + qi0qj1)
2

8(q2
i + q2

j − q2
k)

2

(q2
i )

2(q2
i + 4)(q2

j )
2(q2

j + 4)(q2
k + 4)

− (q2
i0 − q2

i1)
2 16

(q2
i )

2(q2
i + 4)(q2

j + 2)(q2
k + 2)

(2.30)

− (qi0qj0 − qi1qj1)(qi0qk0 − qi1qk1)
16

[

(q2
i )

2 − (q2
j − q2

k)
2
]

(q2
i )

2(q2
i + 4)q2

j (q
2
j + 4)q2

k(q
2
k + 4)

]

two massless “longitudinal” modes is cancelled by the conformal gauge ghost contribution to the partition

function. The “ghost” sign of the time direction is irrelevant also for the higher-loop corrections: since

time direction enters the action only quadratically, it can be integrated out once and for all (e.g., with

t → it prescription to make Euclidean path integral convergent) and that does not lead to any sign changes

compared to the case when t would have “physical” sign.
24Here we assume Euclidean continuation, i.e. e−Γ =

R

[dΦ] e−S, S =
R

d2σL.
25Here qi and qj denote two momenta without any summation over i, j and qk = −(qi + qj).
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In (2.28) d = 2 − 2ǫ.26 We also continued to Euclidian space by replacing qj0 → −iqj0, so

that in the above expressions q2
j = q2

j0 + q2
j1.

I1 and I2 give rise to UV-divergent integrals; the integral of I1 contains power-like

divergences and the integral of I2 – logarithmic divergences. The first two terms in I2

and the first term in I3 give rise to IR-divergent integrals. In addition to the dimensional

regularization for the UV divergences we shall introduce a small mass parameter m0 to

regularize the IR divergences.27

The subscript N on IN is used to indicate that this integrand does not look 2d Lorentz

invariant. However, the integral of IN (which is UV and IR finite) can be expressed in

terms of Lorentz-invariant integrals. While the original sigma model action (the string

action in conformal gauge) is 2d Lorentz-invariant, this symmetry is spontaneously broken

by a choice of the background in (2.15), (2.16), i.e. (cf. (2.14))

cos ψdφ2 = Nαdσα, sin ψdφ3 = N∗
αdσα, Nα =

κ√
2
(1,−i), N∗

α =
κ√
2
(1, i). (2.31)

The 2-loop effective action then depends on the background through the mass terms (pro-

portional to N∗
αNα = −κ2, etc.) and also through the explicit factors of Nα and N∗

α in

the denominators of momentum integrals. Indeed, IN in (2.30) is proportional to 4 factors

of these vectors. Since the rest of the momentum integrands are Lorentz-covariant, they

can be reduced to products of contractions between Nα and N∗
α factors and scalar Lorentz-

invariant momentum integrals. We shall illustrate how that happens below. As a result,

the corresponding term in Γ2 will contain 4 factors of first derivatives of the background

fields, i.e. will be proportional to ∂αφ2∂αφ2∂
βφ3∂βφ3 + · · · with coefficients that are given

by Lorentz-invariant momentum integrals.28

Similarly, for the contribution of the quartic vertex in (2.25) Vijkl = ∂4L
∂Φi∂Φj∂Φk∂Φl

∣

∣

Φ=0

to the diagram (b) in figure 1 we find

Γ̄quartic = c4

∫

ddqid
dqj

(2π)2dµ2d−4
Vijkl∆

−1
ij ∆−1

kl = c4
4π√

λ

∫

ddqid
dqj

(2π)2dµ2d−4
(J1 + J2) , (2.32)

where

c4 =
1

8
is the combinatorial factor. Despite the relatively complicated-looking quartic La-

grangian (2.20) the integrands J1 and J2 are very simple:

J1 =
24

q2
i

− 8

q2
i + 2

, (2.33)

J2 = − 8

(q2
i + 2)(q2

j + 2)
− 32

(q2
i + 4)(q2

j + 4)
. (2.34)

26The factor 1
d

in (2.28) came from a reduction of a tensor integral to a scalar integral due to sym-

metric integration:
R ddqiddqj

(2π)2d

(qi·qj)2

(q2

i
+4)(q2

j
+4)

= d−1
R ddqiddqj

(2π)2d

q2

i q2

j

(q2

i
+4)(q2

j
+4)

. In general,
R

ddq

(2π)d

qαqβ

(q2+4)n =

d−1
R

ddq

(2π)d

ηαβq2

(q2+4)n .
27We will not use regulators in finite integrals.
28Let us note that the use of dimensional regularization in a situation with Lorentz invariance sponta-

neously broken by either the background or by gauge choice is not uncommon (cf., e.g., discussions of YM

theory in lightcone gauge [52]).
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Both J1 and J2 lead to UV-divergent integrals – power-like and logarithmic, respectively.

The contribution of the measure counterterm (2.22) is

δΓ̄measure = − 4π√
λ

∫

ddqid
dqj

(2π)2dµ2d−4

(

3

q2
i

− 1

q2
i + 2

− 1

q2
i + 4

)

. (2.35)

It is not hard to check that it cancels all power-like divergences in the 2-loop integrals in

(2.26) and (2.32). In particular, it cancels the contribution of the J1 integral in (2.33).

Let us note that if we formally consider the theory (2.17) defined on R × R and set

κ = 0 then the corresponding 2-loop effective action will be given by (2.21) with (2.26)

containing only “massless” limit 12
q2
i

of I1 in (2.27) and with (2.32) containing only the

“massless” limit 16
q2
i

of J1 in (2.33). Their sum is then cancelled by the “massless” limit of

the measure contribution (2.35) (with the integrand 1
q2
i

). Thus Γ2(κ → 0) → 0.

2.4 Evaluation of 2-loop momentum integrals

Combining the above 2-loop contributions we get for (2.21)

Γ̄2 = Γ̄cubic + Γ̄quartic + δΓ̄measure

=
4π√

λ

∫

ddqid
dqj

(2π)2dµ2d−4

[(

− 1

12
I2 +

1

8
J2

)

− 1

12
(I3 + IN )

]

. (2.36)

Here the contribution of the first parenthesis contains all UV divergences. It turns out that

the contributions of states with mass-squared equal to 2 cancel between the topologies (a)

and (b). Then we get (d = 2 − 2ǫ)

− 1

12
I2 +

1

8
J2 =

ǫ

1 − ǫ

1

(q2
i + 4)(q2

j + 4)
+

1

2

(

1

q2
i

− 1

q2
i + 4

)(

1

q2
j

− 1

q2
j + 4

)

. (2.37)

The contribution of the second term in (2.37) is UV-finite but IR-divergent. As was men-

tioned above, we shall regularize this IR divergence by introducing a small mass m0. Using

the standard integral

I(M2) ≡ µ2ǫ

∫

ddq

(2π)d
1

q2 + M2
=

1

(4π)d/2

π

Γ(2 − ǫ) sin(πǫ)

(

µ2

M2

)ǫ

≈ 1

4π

[

1

ǫ
+ 1 − γ + ln

4πµ2

M2
+ O(ǫ)

]

, (2.38)

we then find29

Γ̄2 =
1

4π
√

λ

[

1

ǫ
+ 3 − 2γ + 2 ln(πµ2) +

1

2
ln2

(

m2
0

4

)]

− 4π

12
√

λ

∫

d2qid
2qj

(2π)4
(I3 + IN ) .(2.39)

29Here γ = −Ψ(1) = 0.5772 . . . is the Euler constant. Let us also recall that we have rescaled the world-

sheet variables by κ. If we did not do this but still formally decompactified the spatial direction of the

world sheet we would get the first term here as

Γ̄2 =
κ2

4π
√

λ

»

1

ǫ
+ 3 − 2γ + 2 ln

πµ2

κ2
+

1

2
ln2

„

m2
0

4κ2

«–

+ finite .
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As expected for a symmetric-space sigma model, the double-pole 1
ǫ2

UV divergences can-

celled out (cf. (2.8), (2.11)). The effective action is found by multiplication of this expression

by V2 = 2πκ2T̄ as in (1.17).

Next, let us compute the integral of I3 in (2.29), (2.36), writing it as

I3 =

∫

d2qid
2qj

(2π)4
(I3,1 + I3,2 + I3,3) = I3,1 + I3,2 + I3,3 . (2.40)

The integral of the first term

I3,1 =

∫

d2qid
2qj

(2π)4
24

q2
i q

2
j ((qi + qj)2 + 4)

(2.41)

with two massless propagators is IR divergent and we need to regularize it by m0 → 0.

This leads to an integral which is a special case of the following integral with 3 massive

propagators with at least two equal masses30

I(M,M ′) =

∫

d2qid
2qj

(2π)4
1

(q2
i + M2)(q2

j + M ′2)[(qi + qj)2 + M ′2]
(2.42)

The calculation of this integral is standard: we Feynman-parametrize the propagators with

equal masses and do the integral over qj with the result:

I(M,M ′) =
1

4π

∫ 1

0
dx

∫

d2qi

(2π)2
1

(q2
i + M2)[x(1 − x)q2

i + M ′2]
(2.43)

There is no need of Feynman parametrization for the second momentum integral; comput-

ing it directly leads to

I(M,M ′) =
1

(4π)2

∫ 1

0
dx

ln M2

M ′2 + ln[x(1 − x)]

x(1 − x)M2 − M ′2 . (2.44)

For generic values of M and M ′ the remaining integral leads to a hypergeometric function.

However, (2.41) corresponds to M = 2, M ′ = m0 → 0. Expanding (2.44) in M ′ = m0 → 0

we get for (2.41)

(I3,1)m0→0 =
6

(4π)2

[

13

3
π2 + ln2

(

m2
0

4

)]

. (2.45)

Multiplying this by the − 1
12

4π√
λ

factor in (2.39) we conclude that the IR divergence from

I3,1 cancels the one in (2.39), so that the bosonic part of the effective action is IR finite.31

For the second term I3,2 we need (2.42) with M2 = 4 and M ′2 = 2, with (2.44) then

giving

I3,2 =

∫

d2qid
2qj

(2π)4
48

(q2
i + 4)(q2

j + 2)((qi + qj)2 + 2)

=
24

(4π)2

∫ 1

0
dx

ln[2x(1 − x)]

2x(1 − x) − 1
=

48

(4π)2
K . (2.46)

30We may solve the momentum conservation condition as qk = −(qi + qj) or as qj = −(qk + qi); the final

result is the same.
31This is of course what one should have expected since we are computing a physical quantity: the value

of the (global symmetry invariant) effective action on a classical solution, cf. [53, 43].
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Here K is the Catalan’s constant,

K ≡
∞

∑

k=0

(−1)k

(2k + 1)2
=

1

16

[

Ψ′
(

1

4

)

− Ψ′
(

3

4

)]

= 0.915966 . . . , (2.47)

where

Ψ′(z) = ψ1(z) ≡ d2

dz2
ln Γ(z) (2.48)

is the trigamma function.32 For the third term in I3 in (2.29), (2.36) we need (2.42) with

M2 = M ′2 = 4 so that

I3,3 = −
∫

d2qid
2qj

(2π)4
8

(q2
i + 4)(q2

j + 4)((qi + qj)2 + 4)

= − 2

(4π)2

∫ 1

0
dx

ln[x(1 − x)]

x(1 − x) − 1
= − 8

(4π)2
K̃ , (2.49)

where

K̃ ≡ 1

72

[

Ψ′
(

1

6

)

+ Ψ′
(

1

3

)

− Ψ′
(

2

3

)

− Ψ′
(

5

6

)]

= 0.585976 . . . . (2.50)

Let us note also an alternative representation for K̃ similar to the one for K in (2.47) which

follows from the series representation for Ψ′(z)33

K̃ =
1

2

[ ∞
∑

k=0

(−1)k

(3k + 1)2
+

∞
∑

k=0

(−1)k

(3k + 2)2

]

. (2.51)

The calculation of the integral of IN in (2.30) is described in appendix E.

Combining the expressions (2.45), (2.46), (2.49) and (E.18) we finally find for the

bosonic contribution (2.39) to the 2-loop effective Lagrangian34

Γ̄2B =
1

4π
√

λ

([

1

ǫ
+ 3 − 2γ + 2 ln(πµ2)

]

−
(

2K +
4

3
K̃

))

. (2.52)

The fermionic contribution is expected to cancel the divergent part and the associated

finite terms, i.e. the first bracket in (2.52). The non-trivial finite bosonic contribution to

the 2-loop string coefficient a2 of ln S in (1.1), (1.2) should then be proportional to 2K+ 4
3K̃:

it is found as in (1.17), (1.18) by multiplying (2.52) by 2πκ ≈ 2 ln S. This gives

a2B = − 1

π

(

K +
2

3
K̃

)

≈ −0.41591 . (2.53)

This should be supplemented by the corresponding contribution of the 2-loop graphs with

the fermions.

32It admits the following series representation ψ1(z) =
P∞

n=0
1

(z+n)2
and also satisfies a reflection formula

ψ1(1 − z) + ψ1(z) = π2 csc2(πz). Note also that ψ1

`

1
4

´

= π2 + 8K.
33We thank M. Staudacher for mentioning this representation to us and for emphasizing that K and K̃

have the same “transcendentality” (cf. [54]).
34The rational term in the finite part of (2.39) cancelled out between I3 and IN .
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3. Fermionic contribution to the 2-loop effective action

Let us now turn to the contribution to the 2-loop effective action coming from diagrams

containing fermionic propagators. The relevant terms in the AdS5 × S5 Lagrangian ex-

panded near the background (2.15) can be symbolically written as

LF =
1

2
θKθ + (θM1θ)Y1Φ + (θM2θ)ΦY2Φ + (θM3θ)(θM4θ) . (3.1)

Here Φ stands for the bosonic fluctuation fields (2.23) and K,Mn, Yk are combinations of

Dirac matrices, numerical tensors and world sheet derivatives of the form A+Bα∂α. Their

explicit form follows directly from the relations given in appendix A but are rather lengthy

so we will not give it explicitly here.

As was already mentioned in the Introduction, because the fermionic kinetic term is

only linear in derivative while the interaction vertices contain up to two derivatives, the GS

string theory is formally of non-renormalizable type; this will manifest itself in the presence

of higher power divergences.

Assuming the theory is actually finite, all of power divergences are expected to be

cancelled by the contributions of the path integral measure and κ-symmetry ghosts (see

appendix C for a discussion of this in the flat space case). Alternatively, one may choose

to use dimensional regularization in which all power divergences are automatically set to

zero. Then the remaining ln2 Λ ∼ 1
ǫ2

divergences should cancel separately in the fermionic

sector while the ln Λ ∼ 1
ǫ contributions should cancel against the bosonic divergence in

(2.52).

There are several potential ambiguities in how one deals with divergent integrals.

Since the GS action contains a WZ type term with ǫαβ tensor, this creates a potential

problem with direct application of dimensional regularization.35 We shall assume that

the dimensional regularization is applied only to scalar integrals at the last stage (after

all power-divergent parts of the momentum integrands are separated), i.e. that all tensor

algebra is done in d = 2; in particular, we shall assume that ǫαβ is not continued away

from d = 2.36

Our assumption will be that such a restricted dimensional regularization prescription

is consistent with the basic κ-symmetry of the theory at the quantum level. This is by no

means obvious and a problem with κ-symmetry gauge dependence of the 2-loop result that

we will encounter below appears to be an indication of a problem with this prescription.37

One natural choice of the κ-symmetry gauge (used at the one loop order in [9, 10])

is θ1 = θ2. This gauge is possible in type IIB string action where both Majorana-Weyl

35Let us note also that the parameters of the κ-symmetry transformations are 2d self-dual vectors.
36This is somewhat different from the case of the bosonic sigma model with an antisymmetric tensor

coupling [37, 38] where one could assume that ǫαβǫγδ = f(d)(ηαγηβδ−ηαδηβγ) where f(d) = 1+a(d−2)+· · · ,
and then show that a regularization scheme ambiguity related to the choice of the coefficient a can be

absorbed into a redefinition of the sigma model coupling parameters.
37The standard proof of gauge-independence of on-shell effective action assumes that gauge symmetry in

question is preserved at the quantum level, i.e. implicitly assumes the existence of an invariant regularization

(but the power counting renormalizability of the theory is of course not required).
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fermions in the GS action have the same chirality. One of its advantages is preservation

of global bosonic symmetries of the action. More generally, we may consider the gauge

θ1 = kθ2 where k is a real parameter (see appendix B). Cancellation of k-dependence

in the resulting effective action, i.e. its gauge-choice independence, would be a check of

consistency of our computation procedure (in particular, of the regularization we use).

Let us first comment on the structure of the fermionic 2-loop contributions in the

simpler case of k = 1 gauge. The quadratic part of the gauge-fixed action follows from

(B.3), (B.4) and is given by

LF2 =
√

2κθ̄ [Γ8(∂σ − i∂τ ) − Γ9(∂σ + i∂τ )] θ + 2iκ2θ̄Γ∗Γ8Γ9θ ≡ 1

2
θTKθ . (3.2)

This leads to the propagator (where we again rescaled the momentum by κ)

K−1(q) =
1

4
√

2(q2 + 1)

[

Γ8(q0 + iq1) + Γ9(q0 − iq1) − i
√

2Γ∗Γ8Γ9

]

C . (3.3)

As a result, all fermionic modes have mass equal to 1, while the bosonic modes in (2.24)

had masses equal to 0,
√

2 and 2 (cf. the corresponding 1-loop expression in (1.16)).

There are 3 different types of 2-loop diagrams involving the fermions (see (3.1)):

(i) diagram in figure 1 (a) with two fermionic and one bosonic propagators (we shall call

it “FFB” since it originates from the Yukawa interaction in (3.1));

(ii) diagram in figure 1 (b) with one bosonic and one fermionic propagators (originating

from the “FFBB” interaction);

(iii) diagram in figure 1 (b) with two fermionic propagators (coming from “FFFF” vertex).

The most non-trivial contribution with the integrand containing two fermionic and

one bosonic propagator may come only from the FFB diagram. Thus on general grounds

we may expect that the finite part of the fermionic contribution which should supplement

the finite bosonic contributions in (2.46) and (2.49) should be given by a combination of

two possible finite integrals of the general form (2.42):38

I(
√

2, 1) =

∫

d2qid
2qj

(2π)4
1

(q2
i + 1)(q2

j + 1)[(qi + qj)2 + 2]
=

1

8π2
K , (3.4)

I(2, 1) =

∫

d2qid
2qj

(2π)4
1

(q2
i + 1)(q2

j + 1)[(qi + qj)2 + 4]
=

ln 2

8π2
, (3.5)

where in computing the integrals we used (2.44) and K is again the Catalan’s constant as

in (2.47).

It turns out that only I(
√

2, 1) in (3.4) appears as a result of the actual computation

of the FFB graph. This leads to the conclusion that the finite fermionic contribution can

38The third possible integral I(0, 1) =
R d2qid2qj

(2π)4
1

(q2

i
+1)(q2

j
+1)(qi+qj)2

is IR divergent (cf. (2.45)) and does

not give a non-trivial transcendental contribution to the finite part. It does not actually appear in the

result of the computation.
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alter the coefficient of the G-term in (2.52), (2.53). Assuming all other possible finite

contributions like ln 2 which accompany logarithmic divergences should cancel out, we are

then led to the following prototype of the final answer for the coefficient a2 in (1.2) (cf.

(2.52), (2.53))

a2 = a2B + a2F = − 1

π

[

(1 + cF )K +
2

3
K̃

]

, (3.6)

where the coefficient cF of the fermionic contribution remains to be determined. The result

for cF in the k = 1 gauge appears to be cF = −4 (see below).

Let us now turn to some technical details of the actual computation of the fermionic

graphs we have done. Since the fermions are Majorana (we choose them to be real), the

vertices in fermionic bilinears in the action should be antisymmetrized, i.e. Mk in (3.1)

should stand for 1
2(Mk − MT

k ).39 Then the 2-loop contributions to the 1-PI Euclidean

effective action Γ = −[ln Z]1−PI coming from (3.1) are given symbolically by:40

FFB: −i2 × i3 × Tr[M1K
−1(p)M1K

−1(−q)]Y1Y1∆
−1

FFBB: i × i2 × Tr[M2K
−1]Y2∆

−1

FFFF: −4i × i2 ×
(

Tr[M3K
−1]Tr[M4K

−1] − 2Tr[M3K
−1(p)M4K

−1(−q)]
)

The total number of fermionic 2-loop Feynman graphs one needs to evaluate is around

few hundred. With the help of a Mathematica-based computer program we computed the

resulting integrands in the fermionic contributions to the 2-loop effective action represented

in the form of the double momentum integrals as in (2.26), (2.32). We found that in the

θ1 = kθ2 gauge the integrand depends on the gauge parameter k through the combination

ξ = (k − k−1)2 (3.7)

and, unfortunately, this dependence does not cancel automatically. We have re-arranged

the integrands so that to extract power divergences (using transformations of the type
p2

p2+m2 = 1− m2

p2+m2 ); the latter were then set to zero by switching on dimensional regular-

ization. We also used the expressions for momentum integrals from appendix E.2. As a

result, we found that the ln2 Λ ∼ 1
ǫ2

plus ln Λ ∼ 1
ǫ UV divergent part in the 2-loop effective

action is coming from (cf. (2.21), (2.36))41

Γ̄2F =
4π√

λ
X , (3.8)

X∞ =
(

− 8[1, 2] − (4 − 6ξ)[1, 4] + (4 − 2ξ)[1, 1]
)

+
(

8[1, 2] + 4[1, 4]
)

+
2

3
(4 + ξ)(−36 + 10 + 0 + 40)[1, 1] = 6ξ[1, 4] +

124 + 22ξ

3
[1, 1] . (3.9)

39The antisymmetrization should apply also to derivatives in Mk (in Y2 one should symmetrize them).
40If the Minkowski space action is S = 1

2
Φ∆Φ + 1

2
θKθ + · · · then eiS = exp[− 1

2
Φ(i∆−1)−1Φ −

1
2
θ(iK−1)−1θ + · · · ].
41The resulting effective action computed directly in d = 2 contains no IR divergences.
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Here the three terms are the contributions of the FFB, FFBB and FFFF graphs, respec-

tively, and

[a, b] ≡ I(a)I(b) = µ2ǫ

∫

ddpddq

(2π)d
1

(p2 + a)(q2 + b)
, (3.10)

where I(a) was defined in (2.38). Thus [a, b] contains the 1
ǫ2

+ 1
ǫ divergences. The four

terms in the last FFFF paranthesis represent the contributions of the (θ̄Dθ)2 term in (B.7),

of the term with Γab in (B.7), of the term with Γa′b′ in (B.7) and of the last term in (B.8),

respectively. We find that the [1, 2] terms in (3.9) cancel, but there is no cancellation of

the remaining terms, contradicting the expected conformal invariance of the theory.

In general, one may expect that in a (globally) supersymmetric theory the regulariza-

tion of the fermionic and bosonic parts of the action should be done in some consistent

way. For bosons we used dimensional regularization, and the cancellation of 1
ǫ2

pole in

(2.36), (2.37) ensured also that the remaining 1
ǫ pole had rational coefficient. Even if we

would manage to cancel the 1
ǫ2

pole in the fermionic contribution we would then need some

sort of dimensional regularization producing d-dependent coefficients so that 1
ǫ pole had

rational coefficient to be able to cancel its bosonic counterpart. Which kind of regulariza-

tion is to be used to ensure that is unclear at the moment. The required rationality of

the coefficient of the 1
ǫ pole suggests that the coefficients of [1, 4] and [1, 1] terms in (3.9)

should, like coefficient of the [1, 2] term, be separately equal to zero.

Extracting the non-trivial finite part with 3 propagators contained in the FFB contri-

bution we find that it is given by the integral (3.4) (the integral (3.5) does not appear) but

its coefficient is also gauge (ξ) dependent

Xfin = (4 + 2ξ)I(
√

2, 1) (3.11)

This gauge dependence of the UV divergences and of the finite part which should not be

present in the on-shell effective action is indicating a problem with maintaining κ-symmetry

at the quantum level in the computational prescription we have used.

Given the unsatisfactory result we found in the θ1 = kθ2 gauge we decided to redo

the computation in a light-cone κ-symmetry gauge which is the direct analog of the usual

Γ+θI = 0 gauge in which the flat-space GS action becomes quadratic. The quadratic

and quartic fermionic terms in the AdS5 × S5 action in this gauge are listed in appendix

D. Using a similar computational prescription as described above we have obtained the

following counterparts of eqs. (3.9) and (3.11)

X∞ =
(

8[1, 2] + 12[1, 4] + 8[1, 1]
)

+
(

− 8[1, 2] − 12[1, 4]
)

−4

3
(36 + 11 + 24)[1, 1] = −260

3
[1, 1] , (3.12)

Xfin = 4I(
√

2, 1) . (3.13)

Here the three structures in X∞ are again the contributions of the FFB, FFBB and FFFF

terms. The three terms in the last paranthesis represent the contributions of the (D.16)

term, of the first term in (A.4) in the M2 term in (A.9) and of the second and third terms

in (A.4) in (A.9), respectively.
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Again, the divergences do not appear to cancel42 but one piece of good news is that

the total coefficients not only of the [1, 2] but also of the [1, 4] structures vanish just as

they did in the k = 1 (ξ = 0) gauge in (3.9). Moreover, the finite term in (3.13) is exactly

the same as (3.11) in the k = 1 gauge.

If we make the bold assumption that our computational procedure can be corrected

so that the results in the two gauges fully agree with all divergences cancelling out and the

finite part still given by (3.13) then that would result in the prediction for the coefficient

a2 in (3.6) with cF = −4, i.e.

a2 = a2B + a2F = − 1

π

[

(1 − 4)K +
2

3
K̃

]

≈ 0.750335 . (3.14)

This is even further away from the numerical result (1.3) of [32] than the purely bosonic

contribution (2.53).

4. Concluding remarks

In this paper we initiated the study of 2-loop quantum corrections in AdS5 × S5 string

theory on a particular example of the expansion near a simple “homogeneous” classical

string solution. We used conformal gauge for the 2d diffeomorphisms and considered two

different choices (“covariant” and “light-cone” ones) for the κ-symmetry gauge.

While we did not manage to completely sort out the expected cancellation of 2-loop UV

divergences between the bosonic and the fermionic contributions, our computation revealed

the special transcendental structure of the finite term in the 2-loop effective action that

determines the next-to-next-to-leading order coefficient a2 in the strong-coupling expansion

of the cusp anomalous dimension on the gauge theory side of the AdS/CFT correspondence.

We expect that an improved version of our computation43 that will resolve the technical

problems of apparent gauge dependence and non-cancellation of part of the divergences will

not substantially change our conclusion about the finite part determining the structure of

the coefficient a2 in (1.2).

The reason why we have more confidence in our result for the finite rather than diver-

gent part of the 2-loop contribution is that, as explained in section 3, the former is deter-

mined only by the quadratic fermionic terms in the AdS5 × S5 superstring action (A.8),

while the latter depends essentially also on the complicated quartic fermionic terms (A.9).44

Our prediction (3.6), (3.14) for the 2-loop coefficient a2 suggests the following obser-

vation. It is interesing to note that the first three terms in the strong coupling expansion

42Power-like divergences have been eliminated in both equations (3.12) and (3.9) due to our regularization

scheme. It is, however, interesting to note that in a cutoff-based regularization scheme the power-like

divergences appearing in the light-cone gauge are milder than those in the θ1 = kθ2 gauge. In particular,

quartic divergences appear to be absent in the former gauge.
43One may try to redo the same computation using a different fermionic parametrization of the AdS5 ×

S5 action (e.g., like the one employed in [42]). It would be interesting also to attempt to do a similar

computation by starting with the Berkovits formulation [26] of the AdS5 × S5 action.
44There is of course an issue of apparent gauge dependence of the finite part (3.11) in the θ1 = kθ2 gauge,

but given that we got the same finite results in the two very different gauges — θ1 = θ2 and the light-cone

gauge — we are inclined to speculate that there is some problem with the computation in the k 6= 1 gauge.
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of the cusp anomalous dimension (1.2) hint at a systematic expansion in polygamma func-

tions. Indeed, a1 in (1.2) can be written as a1 = − 3
2π (Ψ(1) − Ψ(1

2)) and a2 is a linear

combination of K (2.47) and K̃ (2.50) which contain only the values of the first derivative

of the digamma function Ψ(z).45 It is therefore tempting to conjecture that the coefficient

an+1 appearing at order λ−n/2 in the strong coupling expansion in (1.1), (1.2) will be a

combination of values of derivatives Ψ(n)(z) at rational arguments. A potentially related

structure may follow from the strong coupling expansion of the BFKL kernel which at

weak coupling expresses the finite spin twist-2 anomalous dimensions as an expansion in

derivatives of the digamma function (see [55] for a comparison between this approach and

the Bethe ansatz predictions).

Similar 2-loop computations can also be done for some other special string solutions,

for example, for the 2-spin (J1, J2) solution in S5. This solution further simplifies in the

limit J1 ≫ J2, and the 1-loop correction vanishes [56]; the same is expected [57] to happen

at the two (and higher) loop level. The methods of the present paper allow one to verify

this.
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A. AdS5 × S
5 superstring Lagrangian

The starting point of the 2-loop computations in this paper is the type IIB Green-Schwarz

AdS5 × S5 superstring action I =
∫

d2σ L which is the sum of the “kinetic” and “Wess-

Zumino” term [4]

L = LKin + LWZ =

√
λ

2π

[

− 1

2

√
−hhαβLA

αLA
β − 2iǫαβ

∫ 1

0
ds LA

αs sIJ θ̄IΓALJ
βs

]

. (A.1)

The explicit form of this action to quartic order in θ (which is sufficient for our present

purpose) was presented in [4]. The exact solution of the Maurer-Cartan equations for the

supervielbeine was given in [5] (see also [6]). The AdS5 × S5 supersymmetry algebra and

thus the resulting string action of [4] can be rewritten in terms of 10d Dirac matrices

45One may wonder if the actual mechanism of cancellation of UV divergences may leave behind a finite

piece containing ln 2 terms. The presence of such ln 2 terms could be in conflict with the “transcendentality

principle” assuming one extends it from weak-coupling [33, 1] to a strong-coupling expansion. We thank

M. Staudacher for this remark.
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making it independent of a choice of a particular representation of ΓA [58] (see also [9, 10]

and [39]).46

In the above expression I, J = 1, 2, sIJ = (1,−1), LA
α = (LA

αs)s=1 and

LA
αs = ∂αxρeA

ρ (x) − 4iθ̄IΓA

[

sinh2( s
2M)

M2

]

IJ

DαθJ , LJ
βs =

[

sinh(sM)

M Dβθ

]J

,(A.2)

DθI = DθI − i

2
ǫIJeAΓ∗ΓAθJ , DθI = dθI +

1

4
ωABΓABθI , eA = dxµ eA

µ (x) (A.3)

(M2)IL = −ǫIJΓ∗Γ
AθJ θ̄LΓA +

1

2
ǫLK(ΓabθI θ̄KΓabΓ∗ − Γa′b′θI θ̄KΓa′b′Γ

′
∗) . (A.4)

Here DIJDJKθK = 0. The indices run as follows

µ, ν = 0, 1, 2, . . . , 9; A = (a; a′) ; a, b = 0, 1, 2, 3, 4 ; a′, b′ = 5, 6, 7, 8, 9

For Dirac matrices we used the notation from [39]

Γ∗ = iΓ0Γ1Γ2Γ3Γ4 Γ′
∗ = iΓ5Γ6Γ7Γ8Γ9 Γ∗Γ

′
∗ = −Γ′

∗Γ∗ = Γ11 , (A.5)

Γ2
∗ = −Γ′2

∗ = 1 , Γ11 = −Γ0123456789 , Γ2
11 = 1 . (A.6)

Here ΓA are 32 × 32 Dirac matrices, Γ(AΓB) = ηAB = (−1,+1, . . . ,+1), and Γ11 defines

the 10d chiral projectors. We also assume the standard hermitian conjugation rule for

fermions: (ψχ)† = χ†ψ†.

In the type IIB string action the fermions are Majorana-Weyl of the same chirality,

e.g., θI = Γ11θ
I . The Majorana condition

θ̄ = θTC , θ̄ ≡ θ†Γ0 , CT = −C , ΓA = −C−1ΓT
AC . (A.7)

can be solved by choosing C = Γ0 and thus having θ real.47 In the specific representation

of Γ-matrices used in [4, 39] Γ11 = I16 × σ3, so that “left” spinors satisfying θI = Γ11θ
I

have lower 16 components equal to zero. The final result of our computation should not

depend on a choice of a particular representation of ΓA and C.

To quartic order in fermions the fermionic part of (A.1) is (L = LB + LF , LF =

LF2 + LF4 + · · · )

2π√
λ
LF2 = i(ηαβδIJ − ǫαβsIJ)θ̄Ie/αDβθJ

= i(ηαβδIJ − ǫαβsIJ)θ̄Ie/α

[

δJKDβ − i

2
ǫJKΓ∗e/β

]

θK , (A.8)

2π√
λ
LF4 = (ηαβδIJ − ǫαβsIJ)

[

i

12
θ̄Ie/αM2

JKDβθK +
1

2
(θ̄KΓADαθK)(θ̄IΓADβθJ)

]

(A.9)

46This “10d covariant” form of the action naturally comes out of the general form of GS action in type

IIB supergravity background [3] once one specifies the curvature and the 5-form field to their AdS5 × S5

values.
47For 10d Majorana fermions of the same chirality ψ̄1ΓA1...Anψ2 is non-zero for n=odd and is symmetric

in ψ1, ψ2 for n = 3, 7 and antisymmetric if n = 1, 5, 9.
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Here we used the conformal gauge
√
−hhαβ = ηαβ and

e/α = eA
αΓA , eA

α = eA
ρ ∂αxρ , Dβ = ∂β +

1

4
ωβ

ABΓAB , ωα
AB = ωρ

AB∂αxρ . (A.10)

The metric, vielbeine and spin connection are those following from the AdS5 × S5 met-

ric (2.12). In particular, the non-zero background values are (see (2.12), (2.16), (A.20))48

e/0 =
κ√
2
(Γ8 + Γ9) , e/1 = − iκ√

2
(Γ8 − Γ9) , eA

αeAβ = −κ2ηαβ , (A.11)

ω0
ABΓAB =

√
2κΓ7(Γ8−Γ9) = 2iΓ7e/1 , ω1

ABΓAB = −i
√

2κΓ7(Γ8+Γ9) = −2iΓ7e/0 .

Let us list the general expressions for the projected vielbeine eA
α = eA

ρ ∂αxρ for the AdS5×S5

metric in (2.13), (2.14)

e0
α =

1 + 1
4z2

1 − 1
4z2

∂αt , ek
α =

1

1 − 1
4z2

∂αzk , k = 1, 2, 3, 4 (A.12)

e5
α =

√

1 − y2

√

1 − x2 − y2
∂αx +

xy
√

(1 − y2)(1 − x2 − y2)
∂αy , e6

α =
∂αy

√

1 − y2
(A.13)

e7
α =

√

1 − x2 − y2∂αψ , (A.14)

e8
α =

√

1 − x2 − y2 cos ψ∂αφ2 , e9
α =

√

1 − x2 − y2 sin ψ∂αφ3 . (A.15)

The Lorentz connection satisfying ǫαβ(∂αeA
β +ωα

A
BeB

β ) = 0(ωAB
α ≡ ωρ

AB∂αxρ = −ωAB
α ) is

ωα
0i = ∂αt

zk

1 − 1
4z2

, ωα
kn = −1

2

zk ∂αzn − zn ∂αzk

1 − 1
4z2

, ωα
56 = − y

√

1 − y2
e5
α (A.16)

ωα
57 =

x∂αψ
√

1 − y2
, ωα

58 =
x cos ψ ∂αφ2

√

1 − y2
(A.17)

ωα
59 =

x sin ψ ∂αφ3
√

1 − y2
, ωα

67 =
y
√

1 − x2 − y2∂αψ
√

1 − y2
(A.18)

ωα
68 =

y
√

1 − x2 − y2 cos ψ ∂αφ2
√

1 − y2
,

ωα
69 =

y
√

1 − x2 − y2 sin ψ ∂αφ3
√

1 − y2
(A.19)

ωα
78 = sin ψ ∂αφ2 , ωα

79 = −cos ψ ∂αφ3 . (A.20)

B. κ-symmetry gauge fixing: θ1 = kθ2 gauge

One natural gauge choice (used also in [9, 10, 12]) in the present case is 49

θ1 = θ2 ≡ θ . (B.1)

48We recall that the AdS5 and S5 coordinates in (2.13), (2.14) are labeled as 0, 1, 2, 3, 4 and 5, 6, 7, 8, 9.
49This gauge is singular if one expands near a null geodesic but is regular if the string background has

both τ and σ dependence.

– 26 –



J
H
E
P
0
7
(
2
0
0
7
)
0
5
6

Then for the relevant (to 2-loop order) quartic terms in the fermions one finds

LA
αs = ∂αxρeA

ρ − 2is2θ̄ΓADαθ +
s4

12
θ̄ΓA(−Γabθθ̄ΓabΓ∗ + Γa′b′θθ̄Γa′b′Γ

′
∗)Γ∗ΓBθ eB

α

= ∂αxρeA
ρ − 2is2θ̄ΓADαθ +

s4

12
θ̄ΓA(−Γabθθ̄Γab + Γa′b′θθ̄Γa′b′)ΓBθ eB

α

sIJ θ̄IΓALJ
βs = −isθ̄ΓAΓ∗ΓBθ eB

β − 2s3

3
θ̄ΓAΓ∗Γ

Bθθ̄ΓBDβθ . (B.2)

As a result, the “kinetic” and “WZW” parts of (A.1) become (to order θ4)

2π√
λ
LKin = ηαβ

[

− 1

2
∂αxµ∂βxνGµν(x) + 2ieA

α θ̄ΓADβθ + 2θ̄ΓADαθθ̄ΓADβθ

+
1

12
eA
αeB

β θ̄ΓA(Γabθθ̄Γab − Γa′b′θθ̄Γa′b′)ΓBθ

]

, (B.3)

2π√
λ
LWZ = ǫαβ

[

− eA
αeB

β θ̄ΓAΓ∗ΓBθ +
i

3
eA
α θ̄ΓAΓ∗ΓBθθ̄ΓBDβθ − ieA

α θ̄ΓBΓ∗ΓAθθ̄ΓBDβθ

]

= ǫαβ

[

− eA
αeB

β θ̄ΓAΓ∗ΓBθ +
4i

3
eA
α θ̄ΓAΓ∗ΓBθθ̄ΓBDβθ

]

. (B.4)

We used that for the “left” fermions Γ11θ = Γ∗Γ′
∗θ = θ and also that θ̄ΓBΓ∗ΓAθ =

−θ̄ΓAΓ∗ΓBθ. The resulting action is the same as the quartic fermionic action found in

eqs. (4.12)-(4.14) in [4] upon restricting it to the gauge (B.1).

One may also consider a more general gauge (here k is a real number)

θ1 = k θ2 , θ2 ≡ θ . (B.5)

Then to θ4 order

LA
αs = ∂αxρeA

ρ − i(1 + k2)s2θ̄ΓADαθ

+(1 + k2)2
s4

48
θ̄ΓA(−Γabθθ̄Γab + Γa′b′θθ̄Γa′b′)ΓCθeC

α ,

sIJ θ̄IΓALJ
βs = (k2 − 1)sθ̄ΓADβθ − iksθ̄ΓAΓ∗ΓBθeB

β − k(1 + k2)
s3

3
θ̄ΓAΓ∗Γ

Bθθ̄ΓBDβθ

+(k4 − 1)
is3

24
θ̄ΓA(−Γabθθ̄Γab + Γa′b′θθ̄Γa′b′)ΓCθeC

β . (B.6)

As a result, (B.3) and (B.4) are generalized to

2π√
λ
LKin = ηαβ

[

− 1

2
∂αxµ∂βxνGµν(x) + i(1 + k2)eA

α θ̄ΓADβθ +
(1 + k2)2

2
θ̄ΓADαθθ̄ΓADβθ

−(1 + k2)2

48
eA
αeB

β θ̄ΓA(−Γabθθ̄Γab + Γa′b′θθ̄Γa′b′)ΓBθ

]

, (B.7)

2π√
λ
LWZ = ǫαβ

[

− i(k2 − 1)eA
α θ̄ΓADβθ − keA

αeB
β θ̄ΓAΓ∗ΓBθ

+
1

6
ik(k2 + 1)eA

α θ̄ΓAΓ∗ΓBθθ̄ΓBDβθ − 1

2
ik(k2 + 1)eA

α θ̄ΓBΓ∗ΓAθθ̄ΓBDβθ

]

= ǫαβ

[

− i(k2 − 1)eA
α θ̄ΓADβθ − keA

αeB
β θ̄ΓAΓ∗ΓBθ

+
2

3
ik(k2 + 1)eA

α θ̄ΓAΓ∗ΓBθθ̄ΓBDβθ

]

, (B.8)
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where we used that the term proportional to k4 − 1 vanishes under antisymmetrization in

α, β. Note that if we rescale θ by (k2+1
2 )1/2 then (B.7) will become equivalent to (B.3)

while (B.8) will take the form

2π√
λ
LWZ = ǫαβ

[

− 2i
k2 − 1

k2 + 1
eA
α θ̄ΓADβθ − 2k

k2 + 1
eA
αeB

β θ̄ΓAΓ∗ΓBθ

+
8i

3

k

k2 + 1
eA
α θ̄ΓAΓ∗ΓBθθ̄ΓBDβθ

]

, (B.9)

which reduces to (B.4) for k = 1.

The fermionic propagator in the θ1 = kθ2 gauge corresponding to (B.3), (B.9) (after

the above rescaling of θ and after the rescaling of momenta by κ, i.e. with the same

normalization as in (3.3)) is

K−1(q) =
k−1 + k

8
√

2 (q2 + 1)

([

k−1

2
(1 − i)(q0 − q1) +

k

2
(1 + i)(q0 + q1)

]

Γ8

+

[

k−1

2
(1 + i)(q0 − q1) +

k

2
(1 − i)(q0 + q1)

]

Γ9 − i
√

2 Γ∗Γ8Γ9

)

C (B.10)

where q is the 2d momentum and C is the charge conjugation matrix. Note that the

contribution of the connection terms in Dα to the propagator vanishes (cf. (A.11)).

The propagator is invariant under k → k−1 combined with the 2d parity transforma-

tion, i.e. q1 → −q1. The same transformation is also a symmetry of the interaction terms

in (B.7), (B.8).50

C. Cancellation of 2-loop corrections in flat-space Green-Schwarz action

in θ
1 = θ

2 gauge

To clarify the issue of cancellation of power divergences in diagrams with fermion lines

it is useful to consider a similar 2-loop cancellation in flat space type IIB GS action [2]

(cf. (A.1))

I =
1

2πα′

∫

d2σ

[

− 1

2
(∂αxµ−iθ̄IΓµ∂αθI)2−iǫαβsIJ θ̄IΓµ∂βθJ

(

∂αxµ− 1

2
iθ̄KΓµ∂αθK

)]

, (C.1)

where we fixed the conformal gauge
√
−hhαβ = ηαβ. Let us expand this action near the

“homogeneous” classical solution51

xµ = Nµ
ασα , σα = (τ, σ) , (C.2)

50Note that the GS action (A.1) is not invariant under θ1 → θ2 due to: (i) the presence of sIJ in the

WZ term, and (ii) the presence of ǫIJ terms in Dθ and in M in (A.4). The first reason is present already

in flat-space GS action and can be compensated by 2d parity transformation or ǫαβ → −ǫαβ . The second

is due to the presence of a non-trivial RR background: each ǫIJ factor is accompanied by a factor of Γ∗

(note that Γ′
∗ = Γ∗Γ11) which is present due to coupling to self-dual F5 field. Thus reversing the sign of F5

background corresponds to θ1 → θ2 combined with 2d parity transformation.
51Since the above action depends on xµ only through its derivatives, the coefficients in the expanded

action will be constant.
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where N
µ
α are constant vectors (which we may formally allow to be complex) assumed to

satisfy

∂αxµ∂βxµ = ηµνNµ
αNν

β = fηαβ . (C.3)

Here f is a background-dependent constant. The direct analog of our S5 background in

(2.16) is the following choice

N2
α =

κ√
2
(1,−i) , N3

α =
κ√
2
(1, i) , f = −κ2 , (C.4)

where x2, x3 directions are analogs of φ2 and φ3 in (2.16).

Let us fix the κ-symmetry by the same condition as in (B.1): θ1 = θ2 ≡ θ. Since

sIJ = (1,−1), the contribution of the WZ term in (C.1) then vanishes. The resulting

fermionic kinetic term will turn out to be non-degenerate so this gauge is admissible.

Setting xµ → xµ + x̃µ, we get the following action for the fluctuations x̃µ, θ

Ĩ =
1

2πα′

∫

d2σ

[

− 1

2
(∂αx̃µ − 2iθ̄Γµ∂αθ)2 + 2iθ̄γα∂αθ

]

, (C.5)

where

γα ≡ Nµ
αΓµ , Γ(µΓν) = ηµν , γ(αγβ) = fηαβ . (C.6)

To this action we should add the contribution of the conformal gauge ghosts and the

κ-symmetry ghosts. The former is decoupled from the background but the latter is

non-trivial. The invariance of the GS action under the κ-symmetry δθI = (∂αxµ −
iθ̄JΓµ∂αθJ)ΓµκαI (here the spinor parameter κα1 is selfdual and κα2 — antiselfdual in

2d vector index α) leads in the θ1 = θ2 gauge to an ultralocal ghost action52

Igh(b, c) =
1

2πα′

∫

d2σ bI(Nµ
α + ∂αx̃µ − 2iθ̄Γµ∂αθ)Γµ cαI . (C.7)

On general grounds, one should expect that the total string partition function should be

trivial despite the non-linearity of the action (C.5). Indeed, we could have fixed first the

conformal gauge x+ = p+τ, Γ+θI = 0 in which the GS action (C.1) becomes quadratic

and then choose the background (C.2) in the x2, x3 directions transverse to (x+, x−), x± =

x0±x1. Since we are expanding near an on-shell background, the partition function should

be gauge-independent, i.e. still trivial.

Let us note that the resulting theory (C.5) is formally non-renormalizable: the

fermionic kinetic term is linear in 2d momentum while fermionic interactions contain deriva-

tives. This is a reflection of the absence of the (non-unitary) ∂θ̄∂θ kinetic term in the GS

action (i.e. of the degeneracy of the corresponding superspace sigma model metric). Thus

we should expect divergences with higher powers of the UV cutoff (in an appropriate co-

variant regularization); the triviality of quantum corrections requires cancellation of all

divergences, and, in particular, the absence of logarithmic divergences.

52The conformal gauge ghosts and the κ-symmetry ghosts decouple.
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Let us first consider the 1-loop approximation. Counting non-trivial 1
2 ln det(−∂2)

contributions one gets 10 from bosons, -2 from conformal ghosts and −1
2 × 16 = 8 from

one MW fermion θ; this checks that the total effective number of degrees of freedom is

0. In addition, there is a quadratic divergence proportional to ln f coming from the θ-

determinant ((γα∂α)2 = f∂2). It is cancelled by the 1-loop contribution of the κ-ghosts in

(C.7) (
∫

d2σ bIγαcIα + · · · ).53
To compute the 2-loop contribution it is useful first to transform the action (C.5), (C.7)

into an equivalent but simpler-looking 2-d dual (or “T-dual”) form54 by introducing two

auxiliary fields L
µ
α and Pα

µ and writing the total fluctuation action as

Itot =
1

2πα′

∫

d2σ

[

− 1

2
(Lµ

α)2 + 2iθ̄γα∂αθ

+ bI(γα + Lµ
αΓµ)cIα + Pα

µ [Lµ
α − (∂αx̃µ − 2iθ̄Γµ∂αθ)]

]

. (C.8)

Integrating first over x̃µ (implying Pα
µ = ǫαβ∂βyµ where yµ is a “2-d dual” of x̃µ) and then

over L
µ
α results in

Ĩtot =
1

2πα′

∫

d2σ

[

− 1

2
(∂αyµ + ǫαβbIΓµcIβ)2 + 2iθ̄γα∂αθ − 2iǫαβ∂βyµθ̄Γµ∂αθ

+ bIγαcIα + ǫαβ∂βyµbIΓµcIα

]

. (C.9)

This can be written also as

Ĩtot =
1

2πα′

∫

d2σ

[

− 1

2
(∂αyµ)2 + 2iθ̄γα∂αθ + bIγαcIα

− 2iǫαβ∂βyµθ̄Γµ∂αθ + ǫαβ∂αyµbIΓµcIβ +
1

2
(bIΓµcIα)2

]

. (C.10)

An advantage of this form of the action is the absence of the θ4 and bcθ2 terms at the price

of the appearance of (simpler) (bc)2 term.55

Then the only 2-loop diagram involving θ is then of type (a) in figure 1 where one line is

bosonic and two lines are fermionic. Because of the properties of γα in (C.6) the propagator

for the Majorana-Weyl 10d spinor θ is essentially the same as for a 2-d fermion, i.e. is (in

momentum representation) pαγα

p2 . Then the non-trivial contribution (from the diagram on

figure 1(a)) to the 2-loop effective action is proportional to (V2 is the 2d volume factor)

V2

f2

∫

d2pd2q

(2π)4
Tr(ΓµpαγαΓµqβγβ) ǫγδpγ(p + q)δǫ

γ′δ′qγ′(p + q)δ′

p2q2(p + q)2
. (C.11)

53Similar cancellation applies to the p+-dependence in lightcone gauge.
54A similar transformation was used in [8].
55To make the structure of possible cancellations more transparent it might be useful to replace the

(anti)selfdual ghost cIα with two commuting ghost spinor fields (the associated Jacobian is background-

independent): c1α = (ηαβ + ǫαβ)∂βϑ1 , c2α = (ηαβ − ǫαβ)∂βϑ2 . That way it may be possible to show the

cancellation of corrections between loops of θ and loops of (b, ϑI) to all orders. We will not pursue this

here.
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Since56 Tr(ΓµpαγαΓµqβγβ) = −10 × 16 f(pq) we end up with (omitting the prefactor V2
f )

∫

d2pd2q

(2π)4
(pq)[(pq)2 − p2q2]

p2q2(p + q)2
=

∫

d2pd2q

4(2π)4

[

1 + 3
p2

q2
− 3

(p + q)2

q2

+
q2

(p + q)2
+

(p2 + q2 + 2pq)2

2p2q2
− 1

2

p4

(p + q)2q2

]

(C.12)

where we factorized the integrand and used the symmetry under p → q as well as Lorentz

invariance of the integrand. The above integral can be simplified further into

∫

d2pd2q

4(2π)4

[

p2

q2
+

q2

(p + q)2
− 1

2

p4

(p + q)2q2

]

. (C.13)

This integral is quartically divergent. Applying the dimensional regularization (in combi-

nation with an IR regularization by a mass, see [40]) we conclude that it does not contain

any logarithmically divergent or finite parts, i.e. the result vanishes. The contribution of

ghosts is also trivial in dimensional regularization.

Alternatively, we may use an explicit regularization like an exponential cutoff by in-

serting e
− p2

Λ2 for each momentum integral. Then we get for (C.12) (omitting the overall

factor)

∫

d2pd2qd2k

(2π)4
δ(2)(p + q + k)

(k2 − p2 − q2)[(k2 − p2 − q2)2 − 4 p2q2]

8p2q2k2
e
− 1

Λ2 (p2+q2+k2) (C.14)

Using the symmetry of the integrand under interchange of p, q, k we obtain

∫

d2pd2qd2k

4(2π)4
δ(2)(p + q + k)

[

1 − k4

2p2q2
+

k2

p2

]

e
− 1

Λ2 (p2+q2+k2)

=

∫

d2pd2q

4(2π)4

[

1 − (p + q)4

2p2q2
+

(p + q)2

p2

]

e
− 1

Λ2 (p2+q2+(p+q)2)
. (C.15)

Evaluating the integrals here we find that the first term in the bracket gives Λ4

192 π2 while

each of the last two gives zero.

The result is thus simply a quartic divergence, which should then be cancelled against

the local κ-symmetry ghost contribution so that the total 2-loop contribution to the ef-

fective action is trivial. A careful check of this cancellation may require a systematic

development of the phase-space quantization of the GS action in the θ1 = θ2 gauge (with

all measure factors taken into account).57 The use of dimensional regularization allows

one to by-pass this problem. This is the strategy we adopt also in the curved-space case

considered in this paper.

56The trace is taken with the Weyl projector implied.
57In general, local measure may not be fixed in the Lagrangian quantization; that means also power

divergences can not be cancelled unless all local factors of ghosts and measure are included. For a previous

discussion of quantization of flat-space GS action see, e.g., [59].
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D. κ-symmetry light-cone gauge Γ+θI = 0

The flat-space GS action is known to simplify dramatically in the κ-symmetry light-cone

gauge Γ+θI = 0: the quartic fermionic term in it vanishes. It is natural to expect that a

choice of a similar gauge may also lead to important simplifications in curved space-time

case. In particular, at least part of power divergences may then be absent. Below we shall

present the details of the structure of the AdS5 ×S5 action in a light-cone gauge Γ+θI = 0

needed for computing the fermionic 2-loop contribution discussed in section 3.

D.1 Vanishing of 2-loop correction in the expansion near null geodesic

As a preparation for the 2-loop computation we are interested in it is useful first to con-

sider the expansion near the simplest point-like string configuration: null geodesic that

goes around S5. Since this is a BPS configuration preserving 1/2 of supersymmetry one

expects to find that all world-sheet loop contributions to the sigma model partition func-

tion expanded near this background vanish, i.e. the ground-state energy should not receive

quantum corrections. This is indeed easily verified in the 1-loop approximation where

choosing the light-cone κ-symmetry gauge one gets 8 bosonic and 8 fermionic fluctuation

modes with equal mass [7, 41, 10]. We have checked explicitly that the same is true also in

the 2-loop approximation where one no longer has a benefit of an effective 2d supersym-

metry or even manifest 2d Lorentz symmetry present in the “1-loop” (i.e. “plane-wave”)

action.

We shall use conformal gauge and consider the expansion of the superstring action near

the following sigma model solution corresponding to the metric (2.13), (2.14): t = κτ, φ2 =

κτ with all other angles being trivial. It is actually useful to change the parametrization

of the S5 metric from (2.14) to the one similar to (2.13):

(ds2)S5 =

(

1 − 1
4y2

1 + 1
4y2

)2

dφ2 +
dyndyn

(1 + 1
4y2)2

, n = 1, 2, 3, 4 . (D.1)

Then the classical solution (which solves both the sigma model equations and the conformal

gauge constraints) is

t = κτ, φ = κτ, zk = 0, yn = 0 , (D.2)

and we should thus expand the action to quartic order in fluctuation fields t̃ = t−κτ, φ̃ =

φ− κτ, zk, yn and θI subject to the l.c. κ-symmetry gauge condition (Γ0 + Γ5)θ
I = 0 (we

label φ as the 5-th coordinate).

Let us first make general comments on the bosonic contribution. The logarithmically

divergent parts of the effective actions of the decoupled AdS5 and S5 sigma models are

each given by the counterterm (2.7) multiplying the ∂x∂x term. For a symmetric space

(2.7) is proportional to the metric itself, so we get, up to numerical coefficients, (α′R +

α′2R2 + α′3R3 + · · · )Gµν(x)∂xµ∂xν . Since the scalar curvatures of AdS5 and S5 here are

opposite in sign, we conclude that the divergence at one (or any odd) loop is proportional

to the difference of the AdS5 and S5 classical actions, while the divergence at two (or any
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even) loop is proportional to the sum of the AdS5 and S5 classical actions (i.e. to the total

classical string action). The difference of the AdS5 and S5 classical actions is non-vanishing

on (D.2), in agreement with the presence of 1-loop divergence coming from 8 equal-mass

bosonic modes; this divergence is of course cancelled by the fermions. The sum of the AdS5

and S5 classical actions vanishes on the solution (D.2), so we conclude that the bosonic

part of the partition function can get only finite contribution at two (or any even number

of) loops.

This is indeed what we have found by the direct 2-loop computation: the bosonic

2-loop contribution happens to be completely trivial, i.e. the 2-loop bosonic part of the

effective action vanishes.58

As for the fermionic part, we found (using the l.c. gauge expansion) that the con-

tribution of the diagram in figure 1(a) with two Yukawa FFB vertices is identically zero,

while the contributions of the FFBB and FFFF terms in figure 1(b) are proportional to the

square of the simple massive tadpole integral59 [1, 1] in (3.10) with the coefficients being,

respectively, 32 and -32.

Thus the total 2-loop term in the effective action expanded near the null geodesic is

indeed zero.

Let us stress that to arrive at this result we used dimensional regularization only in a

limited sense: all tensor algebra was done in d = 2 and we continued to d < 2 (to eliminate

power divergences) only at the very end for the scalar integrals found after factorization of

highest divergent parts of the integrands. If instead we have used the standard dimensional

regularization (i.e. have assumed that 〈pαpβ〉 = 1
dηαβ〈p2〉 instead of 〈pαpβ〉 = 1

2ηαβ〈p2〉)
then the contribution of the FFFF term would be −64(1− 1

d ) and we would be left with non-

cancelled 1
ǫ divergences (and a finite part). This indicates that the standard dimensional

regularization cannot be applied to the GS action: it breaks some of its symmetries which

results in non-trivial corrections to what should be a protected BPS state. This of course

is not surprising given, in particular, the presence of the WZ term in the GS action.

D.2 Expansion near the S5 solution in the light-cone gauge

The background (2.15) selects two spatial directions x8 ≡ φ2, x9 ≡ φ3 so a natural choice

for the l.c. gauge condition that should produce a non-degenerate fermionic propagator

when one expands near (2.15) is [Γ0 + 1√
2
(Γ8 +Γ9)]θ

I = 0. More generally, we may consider

a “rotated” choice [Γ0 + 1√
1+ζ2

(Γ8 + ζΓ9)]θ
I = 0 where ζ is a gauge-fixing parameter. The

result for the effective action does not depend on the value of ζ: since ΓA have tangent-

space indices this = follows from rotational invariance of the action in the tangent space.

58Note that our computation is different from the discussions of near-BMN expansion in [39, 42] where a

light-cone-type gauge was imposed on the bosons. We instead use the conformal gauge, with the conformal

gauge ghosts cancelling the contribution of 2 massless longitudinal modes (t̃ and φ̃) at 1-loop; within our

regularization scheme the contribution of these modes also decouples at higher loops.
59We again set κ = 1 by a rescaling of 2d coordinates/momenta.
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In what follows we shall choose the simplest option ζ = 0, i.e.

Γ+θI = 0 , θ̄IΓ+ = 0 , (θI)T Γ− = 0 , (D.3)

Γ± ≡ 1

2
(±Γ0 + Γ8) , Γ−Γ+ + Γ+Γ− = 1 , Γ2

± = 0 , (Γ+Γ−)2 = Γ+Γ− (D.4)

Splitting the bosonic tangent-space indices into 0, 8 and p, q = 1, 2, 3, 4, 5, 6, 7, 9 we get

from (A.3)60

DαθJ = ∂αθJ − 1

2
(ω0p

α − ω8p
α )Γ−Γpθ

J +
1

4
ωpq

α Γpqθ
J

+
1

2
ǫJKep

αΓpΠΓ−θK − 1

2
ǫJK(e0

α − e8
α)ΠθK , (D.5)

where

Π ≡ Γ1234 , Γ∗ = iΓ0Π , Π2 = 1 . (D.6)

The combination entering the quadratic fermionic term (A.8) becomes

θ̄Ie/αDβθJ = −(e0
α − e8

α)θ̄IΓ−∂βθJ − 1

4
(e0

α − e8
α)ωpq

β θ̄IΓ−Γpqθ
J

+
1

2
ǫJK(e0

α − e8
α)(e0

β − e8
β)θ̄IΓ−ΠθK

−1

2
θ̄Iep

αΓp

[

(ω0q
β − ω

8q
β )Γ−Γqθ

J + ǫJKΓ−e
q
βΓqΠθK

]

. (D.7)

Expanding the vielbein and connection near their background values in (A.11) we find for

the fermionic kinetic term

2π√
λ
L(0)

F2 = i(ηαβδIJ − ǫαβsIJ)

[

θ̄IΓ−ē8
α∂βθJ +

1

2
ǫJK(ē8

αē8
β + ē9

αē9
β)θ̄IΓ−ΠθK

]

, (D.8)

where (cf. (2.31))

ē8
α =

κ√
2
(1,−i), ē9

α =
κ√
2
(1, i) , ē8

αē8
β + ē9

αē9
β = −κ2ηαβ , (D.9)

ηαβ ē8
αē8

β = ηαβ ē9
αē9

β = −1 , ηαβ ē8
αē9

β = 0 , ǫαβ ē8
αē9

β = i. (D.10)

Thus

2π√
λ
L(0)

F2 =
κ√
2

[

(1 − i)θ̄1Γ−(∂1 + ∂0)θ
1 + (1 + i)θ̄2Γ−(∂1 − ∂0)θ

2

−i
√

2κ
(

θ̄1Γ−Πθ2 − θ̄2Γ−Πθ1
)

]

≡ 1

2
θTKθ , (D.11)

where the kinetic operator in momentum representation is (we now set κ = 1)

K = −i
√

2

(

(1 − i)(q1 + q0) −
√

2Π√
2Π (1 + i)(q1 − q0)

)

Γ+Γ− . (D.12)

60We have dropped the term with ω08
α since this component of the connection vanishes for our direct-

product metric.
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Here we used that θ̄ = θTC, C = Γ0 = −Γ0 (see (A.7)) and that CΓ− = (Γ− − Γ+)Γ− =

−Γ+Γ−.

Then we get for the propagator (cf. (B.10))

K−1 =
i

2
√

2(q2 + 1)

(

(1 + i)(q1 − q0)
√

2Π

−
√

2Π (1 − i)(q1 + q0)

)

Γ+Γ− , K · K−1 = Γ+Γ−(D.13)

where Γ+Γ− = Γ+C, q2 = −q2
0 + q2

1 . The propagator can be written also in the following

“covariant” form:

(K−1)IJ =
i

2
√

2(q2 + 1)

[

(iē8
αδIJ + ē9

αsIJ)qα −
√

2ΠǫIJ
]

. (D.14)

The logarithm of the determinant of K gives the same 1-loop contribution in (1.16) as

found in the θ1 = kθ2 gauge.

The FFB and FFBB interaction vertices are found from expanding (D.7) (multiplied

by i(ηαβδIJ − ǫαβsIJ) as in (A.8)) to quadratic order in bosonic fluctuation fields in (2.16)

using the expressions in (A.12)–(A.20). Then the Feynman graphs are constructed using

the propagators (2.24) and (D.13). For example, the interaction vertices linear in the S5

field x̃ in (2.16) are given by

2π√
λ
LF2 x̃ = x̃ sIJ θ̄IΓ59Γ−θJ +

1√
2
(∂0 + i∂1)x̃ sIJǫJK θ̄IΓ59Γ−ΠθK

− i

2
√

2
(∂0 + i∂1)x̃ θ̄IΓ57Γ−θI − 1

2
√

2
(∂0 − i∂1)x̃ sIJ θ̄IΓ57Γ−θJ , (D.15)

where we used that a term with Γ58 similar to the one with Γ59 gives vanishing contribution.

The relevant 4-fermion terms follow from the general expression in (A.9). Using (A.20)

(ω̄78
α = ē8

α, ω̄79
α = −ē9

α) first keeping ē8
α, ē9

α general and then using relations (D.10) we find

for the second term in (A.9)

1

2
(ηαβδIJ−ǫαβsIJ)(θ̄KΓADαθK)(θ̄IΓADβθJ) =

1

8

[

− θ̄KΓpΓ−Γ7θ
K θ̄IΓpΓ−Γ7θ

I

+isIJǫJLθ̄KΓpΓ−Γ7θ
K θ̄IΓpΓ9ΠΓ−θL

−isIJǫKLθ̄IΓpΓ−Γ7θ
J θ̄KΓpΓ9ΠΓ−θL

−ǫKLǫIM θ̄KΓpΓ9ΠΓ−θLθ̄IΓpΓ9ΠΓ−θM
]

.

(D.16)

The first term in (A.9) contains two structures:

θ̄Ie/αM2
JKDβθK = ē8

αθ̄IΓ− M2
JKDβθK + ē9

αθ̄IΓ9M2
JKDβθK . (D.17)
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Computing them using (A.4), (D.10) we get

(ηαβδIJ − ǫαβsIJ)ē8
αθ̄IΓ− M2

JKDβθK

=
i

2
(ηαβδIJ−ǫαβsIJ)ē8

αǫLK
[

θ̄IΓ−ΓijθJ θ̄LΓijΓ−Π∂βθK−θ̄IΓ−Γi′j′θJ θ̄LΓi′j′Γ−Π∂βθK
]

−1

4
sIJǫLK

[

θ̄IΓ−ΓijθJ θ̄LΓijΓ−ΠΓ79θ
K − θ̄IΓ−Γi′j′θI θ̄LΓi′j′Γ−ΠΓ79θ

K
]

+
i

4

[

θ̄IΓ−ΓijθI θ̄LΓijΓ−θL − θ̄IΓ−Γi′j′θI θ̄LΓi′j′Γ−θL
]

, (D.18)

(ηαβδIJ − ǫαβsIJ)ē9
αθ̄IΓ9M2

JKDβθK

=
1

2
sIJ

[

ǫJLθ̄IΓ9Γ− ΠΓpθLθ̄KΓpΓ−Γ7θ
K

+θ̄IΓ9ǫ
LKΓ− ΓiθJ θ̄LΓiΠΓ−Γ7θ

K − ǫLK θ̄IΓ9Γ− Γi′θJ θ̄LΓi′ΠΓ−Γ7θ
K

]

− i

2

[

ǫILǫKM θ̄IΓ9Γ− ΠΓpθLθ̄KΓpΓ9ΠΓ− θM

+θ̄IΓ9Γ−ΓiθI θ̄LΓiΓ9Γ−θL − θ̄IΓ9Γ−Γi′θI θ̄LΓi′Γ9Γ−θL
]

, (D.19)

where i, j = 1, 2, 3, 4; i′, j′ = 5, 6, 7, 9 and p = (i, i′).

E. Calculation of 2-loop momentum integrals

E.1 Bosonic integrals

Here we compute the integral of IN in (2.30) that enters (2.26) and (2.36). We split the

integrals in the same way as their integrands in (2.30)

IN = 3(IN,1 + IN,2 + IN,3) , IN,i =

∫

d2qid
2qj

(2π)4
IN,i . (E.1)

Let us start with IN,1 and introduce the tensor

I
αβγδ
1 =

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

qα
i q

β
j q

γ
i qδ

j (q2
i + q2

j − q2
k)

2

(q2
i )

2
(

q2
i + 4

)

(q2
j )

2
(

q2
j + 4

)

(

q2
k + 4

)

=
1

4

[

A1 ηαγηβδ + A2 (ηαβηγδ + ηαδηβγ)
]

, (E.2)

where we used the symmetry under qi ↔ qj.
61 Taking traces over (α, γ) and (β, δ) we

obtain

A1 + A2 =

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

(q2
i + q2

j − q2
k)

2

q2
i

(

q2
i + 4

)

q2
j

(

q2
j + 4

)

(

q2
k + 4

)

. (E.3)

61We reinstated the integral over qk to make the symmetry between qi and qj manifest. Also, we used

the notation ηαβ for the 2d metric. The integrand (2.30) was already continued to Euclidean space; at the

level of the above analysis this replaces ηαβ with δαβ.
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We only need that particular combination of A1 and A2 to compute IN,1. Expanding the

numerator and using various symmetric integration identities we get from (E.3)

IN,1 = 4(A1 + A2) = 4

∫

d2qid
2qj

(2π)2d

[

− 4

q2
i (q

2
i + 4)q2

j (q
2
j + 4)

+
2

q2
i (q

2
i + 4)(q2

k + 4)
+

2

q2
i (q

2
j + 4)(q2

k + 4)

− 2

q2
i (q

2
i + 4)(q2

j + 4)
+

16

q2
i (q

2
i + 4)q2

j (q
2
j + 4)(q2

k + 4)

]

= 4

∫

d2qid
2qj

(2π)4

[

− 4

q2
i (q

2
i + 4)q2

j (q
2
j + 4)

+
1

q2
i q

2
j [(qi + qj)2 + 4]

+
1

(q2
i + 4)(q2

j + 4)[(qi + qj)2 + 4]

]

. (E.4)

For IN,2 we proceed in the same way by starting with the tensor

I
αβγδ
2 =

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

qα
i q

β
i q

γ
i qδ

i

q4
i (q

2
i + 4)(q2

j + 2)(q2
k + 2)

=
1

8
A3 (ηαγηβδ + ηαβηγδ + ηαδηβγ) , (E.5)

where A3 is found by taking the trace. As a result,

IN,2 = −8A3 = −8

∫

d2qid
2qj

(2π)4
1

(q2
i + 4)(q2

j + 2)[(qi + qj)2 + 2]
. (E.6)

For the integral in the last term IN,3 in (2.30) we need to consider two tensors associated

with the prefactor

−(qi0qj0 − qi1qj1)(qi0qk0 − qi1qk1) = (qi0qj0 − qi1qj1)
2 + (qi0qj0 − qi1qj1)(q

2
i0 − q2

i1) , (E.7)

i.e. one with two qi’s and two qj’s and the other one with three qi’s and one qj. The first

one is then similar to I
αβγδ
1 in (E.2)

I
αβγδ
3 =

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

qα
i q

β
j q

γ
i qδ

j [(q2
i )

2 − (q2
j − q2

k)
2]

(q2
i )

2(q2
i + 4)q2

j (q
2
j + 4)q2

k(q
2
k + 4)

=
1

4

[

A4 ηαγηβδ + A5 (ηαβηγδ + ηαδηβγ)
]

, (E.8)

where

A4 + A5 =

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

[(q2
i )

2 − (q2
j − q2

k)
2]

q2
i (q

2
i + 4)(q2

j + 4)q2
k(q

2
k + 4)

=

∫

d2qid
2qj

(2π)4

[

4

q2
i (q

2
i + 4)q2

j (q
2
j + 4)

− 1

q2
i q

2
j [(qi + qj)2 + 4]

+
1

(q2
i + 4)(q2

j + 4)[(qi + qj)2 + 4]

]

. (E.9)
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The second tensor we need is

Ĩ
αβγδ
3 =

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

qα
i q

β
i q

γ
i qδ

j [(q2
i )

2 − (q2
j − q2

k)
2]

(q2
i )

2(q2
i + 4)q2

j (q
2
j + 4)q2

k(q
2
k + 4)

=
1

8
A6 (ηαγηβδ + ηαβηγδ + ηβγηαδ) + A7 (ηαγǫβδ + ηαβǫγδ + ηβγǫαδ) . (E.10)

The A7 term is not contributing in our case since the combination in (E.7) is symmetric in

qi, qj (in fact, A7 = 0 as one can see by doing explicitly one of the two integrals). Taking

traces gives

A6 =
1

2

∫

d2qid
2qjd

2qk

(2π)4
δ(2)(qi + qj + qk)

(q2
k − q2

i + q2
j ) [(q2

i )
2 − (q2

j − q2
k)

2]

q2
i (q

2
i + 4)q2

j (q
2
j + 4)q2

k(q
2
k + 4)

= −1

2

∫

d2qid
2qj

(2π)4

[

− 4

q2
i (q

2
i + 4)q2

j (q
2
j + 4)

+
1

q2
i q

2
j [(qi + qj)2 + 4]

+
1

(q2
i + 4)(q2

j + 4)[(qi + qj)2 + 4]

]

(E.11)

Finally, we get

IN,3 = 4 (A4 + A5 + 2A6) . (E.12)

Summing up the above expressions (E.4), (E.6) and (E.12) we obtain for IN in (E.1)

IN = 24

∫

d2qid
2qj

(2π)4

[

4

q2
i (q

2
i + 4)q2

j (q
2
j + 4)

− 1

q2
i q

2
j [(qi + qj)2 + 4]

− 1

(q2
i + 4)(q2

j + 2)[(qi + qj)2 + 2]
+

1

(q2
i + 4)(q2

j + 4)[(qi + qj)2 + 4]

]

.(E.13)

The integrands on the first line of (E.13) combine into
8qi·qj

q2
i q2

j (q2
i +4)(q2

j +4)[(qi+qj)2+4]
and the

resulting IR finite integral can be evaluated using Feynman parametrization. Alternatively,

we may evaluate the two integrals separately introducing an IR cutoff m0 → 0 and using

that
∫

d2qid
2qj

(2π)4

(

1

q2
i + m2

0

− 1

q2
i + 4

)(

1

q2
j + m2

0

− 1

q2
j + 4

)

→ 1

(4π)2
ln2

(

m2
0

4

)

, (E.14)

and also the previously computed expression (2.45) for (2.41) (see (2.42), (2.44)), i.e.

∫

d2qid
2qj

(2π)4
1

(q2
i + m2

0)(q
2
j + m2

0)[(qi + qj)2 + 4]
=

1

(4π)2

∫ 1

0
dx

ln 4
m2

0
+ ln[x(1 − x)]

4x(1 − x) − m2
0

→ 1

4(4π)2

[

13

3
π2 + ln2

(

m2
0

4

)]

. (E.15)

The remaining two integrals in (E.13) are again of the familiar type (2.42), (2.44) and are

the same as in (2.46) and (2.49)
∫

d2qid
2qj

(2π)4
1

(q2
i + 4)(q2

j + 4)[(qi + qj)2 + 4]
=

1

4(4π)2

∫ 1

0
dx

ln[x(1 − x)]

x(1 − x) − 1
, (E.16)

∫

d2qid
2qj

(2π)4
1

(q2
i + 4)(q2

j + 2)[(qi + qj)2 + 2]
=

1

2(4π)2

∫ 1

0
dx

ln[2x(1 − x)]

2x(1 − x) − 1
. (E.17)
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They are thus expressed in terms of the Catalan constant K (2.47) and a combination of

trigamma values K̃ (2.50). Explicitly, combining the values of the above integrals we find

for (E.13)

IN = −13

8
− 24

(4π)2
(K − K̃) . (E.18)

E.2 Fermionic integrals

The non-invariant integral in the mixed boson-fermion sector contains two different types

of factors. The first is (here we use Euclidean signature and consider the integral directly

in d = 2):

X = (q2
i0 − q2

i1)
2 = (q2

i − 2q2
i1)

2 (E.19)

and its expectation value over (qi, qj) symmetric Lorentz-invariant measure can be evalu-

ated using that as in (E.5) 〈qα
i q

β
i q

γ
i qδ

i 〉 = 1
8(ηαβηγδ + ηαγηδβ + ηαδηγβ)〈q4

i 〉. This gives

〈X1〉 =
1

2
〈q4

i 〉 . (E.20)

The second combination is

Y =(qi0qj0−qi1qj1)(qk0qk0−qk1qk1)=(q2
i −2qi1qj1)(q

2
k−2qk1qk1) , qk = −qi − qj . (E.21)

Using the qi → qj symmetry of the measure the expectation value of X2 is the same as of

Y ′=2qi · qj(q
2
i +qi · qj)−4qi1qj1(q

2
i +qi · qj)−4(q2

i1+qi1qj1)+8qi1qj1(q
2
i1+qi1qj1) . (E.22)

Then 〈Y ′〉 can be found by using the same relations as in (E.10), (E.8)

〈qα
i q

β
i q

γ
i qδ

j 〉 =
1

8
〈q2

i (qi · qj)〉(ηαγηβδ + ηαβηγδ + ηβγηαδ) , (E.23)

〈qα
i q

β
j q

γ
i qδ

j 〉 =
1

8

[

〈−2(qi · qj)
2 + 3q2

i q
2
j 〉ηαγηβδ

+〈2(qi · qj)
2 − q2

i q
2
j 〉 (ηαβηγδ + ηαδηβγ)

]

. (E.24)

As a result,

〈Y 〉 = 〈Y ′〉 = 〈(qi · qj)
2 + q2

i q
2
j 〉 =

1

4
〈(q2

i + q2
j )(qi + qj)

2 − (q2
i − q2

j )
2〉 . (E.25)

Let us now consider again the similar integrals in d dimensions keeping track of d-

dependent factors.62 Here we shall use Minkowski signature and always imply that qi +

qj + qk = 0. We start with

∫

ddqjd
dqk qa

kqb
kq

c
kq

d
k f(qj, qk) = A (ηαβηγδ + ηαγηβδ + ηαδηβγ) (E.26)

A =
1

d(d + 2)

∫

ddqjd
dqk (q2

k)
2 f(qj, qk) . (E.27)

62That may be useful for finding the coefficient of the 1
ǫ

divergences in the fermionic sector as in the

bosonic sector in (2.36), (2.37).
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In particular, we find
∫

ddqjd
dqk (q2

k0 + q2
k1)

2 f(qj, qk) = 4A . (E.28)

Let us consider the following combination

2(qi0qj0 + qi1qj1)(q
2
k0 + q2

k1) = −(q2
i0 + q2

i1)(q
2
k0 + q2

k1) − (q2
j0 + q2

j1)(q
2
k0 + q2

k1) (E.29)

−(qi0qk0 + qi1qk1)(q
2
k0 + q2

k1) − (qj0qk0 + qj1qk1)(q
2
k0 + q2

k1)

The reason for this splitting is to maintain the i ↔ j symmetry. To evaluate its integral

we will need
∫

ddqjd
dqk qa

i qb
i q

c
kq

d
k f(qj, qk) = Aiη

abηcd + Bi(η
acηbd + ηadηbc) (E.30)

Then

d2 Ai + 2dBi =

∫

ddqjd
dqk q2

i q
2
k f(qi, qk),

dAi + d(d + 1)Bi =

∫

ddqjd
dqk (qi · qk)

2 f(qi, qk) , (E.31)

and thus

4Bi =

∫

ddqjd
dqk (q2

i0 + q2
i1)(q

2
k0 + q2

k1) f(qj, qk)

=
4

d(d + 1) − 2

∫

ddqjd
dqk

[

(qi · qk)
2 − 1

d
q2
i q2

k

]

f(qi, qk) (E.32)

Consider also
∫

ddqjd
dqk qa

j qb
kq

c
kq

d
k f(qj, qk) = Dj(η

abηcd + ηacηbd + ηadηbc)
∫

ddqi,jd
dqk (qi,j0qk0 + qi,j1qk1)(q

2
k0 + q2

k1) f(qi,j, qk)

= 4Di,j =
4

d(d+2)

∫

ddqi,jd
dqk(qi,j · qk) q2

k f(qi,j, qk) .(E.33)

Collecting separate terms we get

2

∫

ddqid
dqjd

dqkδ
d(qi + qj + qk)(qi0qj0 + qi1qj1)(q

2
k0 + q2

k1)f(qi, qj, qk) (E.34)

=

∫

ddqid
dqjd

dqkδ
d(qi+qj+qk)

{

4

d(d+1)−2

[

(qi · qk)
2+(qj · qk)

2− 1

d
(q2

i +q2
j )q

2
k

]

+
4

d(d + 2)
(qi · qk + qj · qk)q

2
k

}

f(qi, qj , qk)

Using the momentum conservation qi + qj + qk = 0 we can reorganize various terms:

(qi · qk)
2+(qj · qk)

2+
1

2
(qi · qk+qj · qk)q

2
k =

1

2
(q2

k+2qi · qk)qi · qk+
1

2
(q2

k+2qj · qk)qj · qk

=
1

2
(q2

j − q2
i )qi · qk +

1

2
(q2

i − q2
j )qj · qk

=
1

2
(q2

i − q2
j )

2 (E.35)
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and then

2

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)(qi0qj0 + qi1qj1)(q

2
k0 + q2

k1)f(qi, qj, qk)

=

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)

{

2

d(d + 1) − 2

[

− (q2
i − q2

j )
2 +

2

d
(q2

i + q2
j ) q2

k

]

− 2(2 − d)

d(d(d + 1) − 2)
(q2

k)
2

}

f(qi, qj, qk)

Similarly, we can compute the integrals

I1 =

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)(qi0qj1 + qi1qj0)(qi0qk1 + qi1qk0)f(qi, qj) (E.36)

I2 =

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)(qi0qj1 + qi1qj0)(qi0qk1 + qi1qk0)f(qi, qk) (E.37)

I3 =

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)(qi0qj1 + qi1qj0)(qi0qk1 + qi1qk0)f(qi, qj , qk) (E.38)

Let us consider
∫

ddqid
dqjd

dqkδ
(d)(qi+qj+qk)q

a
i qb

jq
c
i q

d
j f(qi, qj)=

1

4
[A1η

acηbd+A2(η
abηcd+ηadηbc)] (E.39)

We obtain

4

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)q

2
i q

2
j f(qi, qj) = A1d

2 + 2A2d (E.40)
∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)(q

2
i + q2

j − q2
k)

2f(qi, qj) = A1d + A2d(d + 1) (E.41)

Then A1 and A2 are

A1 =
1

d2(d+1)−2d

∫

ddqid
dqjd

dqkδ
(d)(qi+qj+qk)[4(d+1)q2

i q2
j −2(q2

i +q2
j −q2

k)
2]f(qi, qj)

(E.42)

A2 =
1

d2(d+1)−2d

∫

ddqid
dqjd

dqkδ
(d)(qi+qj+qk)[−4q2

i q
2
j +d(q2

i +q2
j −q2

k)
2]f(qi, qj)

(E.43)

Also
∫

ddqid
dqjd

dqkδ
(d)(qi+qj+qk)q

α
i q

β
i q

γ
i qδ

jf(qi, qj) =
1

8
A3[η

acηβδ+ηαβηγδ+ηαδηβγ ] (E.44)

from which one obtains

8

∫

ddqid
dqjd

dqkδ
(d)(qi + qj + qk)q

2
i qiqjf(qi, qj) = d(d + 2)A3 (E.45)

The integral I1 becomes

I1 = −1

2
(A1 + A2 + A3) (E.46)

The integral I2 can be written in the same way as I1 with the formal interchanging j ↔ k

in A1, A2, A3. The integral I3 is the same as I1.
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